X = ∣ ∣ ∣ ∣ ∣ ∣ x x 2 x 3 y y 2 y 3 1 x + y x 2 + x y + y 2 ∣ ∣ ∣ ∣ ∣ ∣
Find the value of X
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
why Level 5 ? @abdulrahman khaled
Log in to reply
Nice Solution ... But Doesnt Needs To Expand Or C1-C3 .... Obeserve C1 and C3 are Identical in Second last Step Thus By Property Of Matrices ... Matrix Is 0.. I did In the same way... Again a nice Solution
I thought that not everyone knows the proprieties of determinant.
I'm not sure that any special tricks are needed. This one can be done with a formal algebra system:
Problem Loading...
Note Loading...
Set Loading...
X = ∣ ∣ ∣ ∣ ∣ ∣ x x 2 x 3 y y 2 y 3 1 x + y x 2 + x y + y 2 ∣ ∣ ∣ ∣ ∣ ∣
C 1 → C 1 − C 2
X = ∣ ∣ ∣ ∣ ∣ ∣ ( x − y ) ( x − y ) ( x + y ) ( x − y ) ( x 2 + x y + y 2 ) y y 2 y 3 1 x + y x 2 + x y + y 2 ∣ ∣ ∣ ∣ ∣ ∣
U s i n g x 2 − y 2 = ( x − y ) ( x + y ) , x 3 − y 3 = ( x − y ) ( x 2 + x y + y 2 )
X = ( x − y ) ∣ ∣ ∣ ∣ ∣ ∣ 1 x + y ( x 2 + x y + y 2 ) y y 2 y 3 1 x + y x 2 + x y + y 2 ∣ ∣ ∣ ∣ ∣ ∣
C 1 → C 1 − C 3
X = ( x − y ) ∣ ∣ ∣ ∣ ∣ ∣ 0 0 0 y y 2 y 3 1 x + y x 2 + x y + y 2 ∣ ∣ ∣ ∣ ∣ ∣
Now expand, along 1st column
Thus X = 0