For those who don't know Part 6 (Determinants)

Algebra Level 2

X = x y 1 x 2 y 2 x + y x 3 y 3 x 2 + x y + y 2 X=\left| \begin{matrix} x & y & 1 \\ { x }^{ 2 } & { y }^{ 2 } & x+y \\ { x }^{ 3 } & { y }^{ 3 } & { x }^{ 2 }+xy+{ y }^{ 2 } \end{matrix} \right|

Find the value of X X


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

U Z
Dec 31, 2014

X = x y 1 x 2 y 2 x + y x 3 y 3 x 2 + x y + y 2 X=\left| \begin{matrix} x & y & 1 \\ { x }^{ 2 } & { y }^{ 2 } & x+y \\ { x }^{ 3 } & { y }^{ 3 } & { x }^{ 2 }+xy+{ y }^{ 2 } \end{matrix} \right|

C 1 C 1 C 2 C_{1} \to C_{1} - C_{2}

X = ( x y ) y 1 ( x y ) ( x + y ) y 2 x + y ( x y ) ( x 2 + x y + y 2 ) y 3 x 2 + x y + y 2 X = \left| \begin{matrix} (x - y) & y & 1 \\ (x - y)(x+y) & { y }^{ 2 } & x+y \\ ( x - y )({ x }^{ 2 }+xy+{ y }^{ 2 })& { y }^{ 3 } & { x }^{ 2 }+xy+{ y }^{ 2 } \end{matrix} \right|

U s i n g x 2 y 2 = ( x y ) ( x + y ) , x 3 y 3 = ( x y ) ( x 2 + x y + y 2 ) \boxed{Using ~ x^2 - y^2 = (x - y)(x+y) , x^3 - y^3 = (x - y)(x^2 + xy + y^2)}

X = ( x y ) 1 y 1 x + y y 2 x + y ( x 2 + x y + y 2 ) y 3 x 2 + x y + y 2 X = (x - y) \left| \begin{matrix} 1 & y & 1 \\ x+y & { y }^{ 2 } & x+y \\ ({ x }^{ 2 }+xy+{ y }^{ 2 })& { y }^{ 3 } & { x }^{ 2 }+xy+{ y }^{ 2 } \end{matrix} \right|

C 1 C 1 C 3 C_{1} \to C_{1} - C_{3}

X = ( x y ) 0 y 1 0 y 2 x + y 0 y 3 x 2 + x y + y 2 X = (x - y) \left| \begin{matrix} 0 & y & 1 \\ 0 & { y }^{ 2 } & x+y \\ 0 & { y }^{ 3 } & { x }^{ 2 }+xy+{ y }^{ 2 } \end{matrix} \right|

Now expand, along 1st column

Thus X = 0 X =0

why Level 5 ? @abdulrahman khaled

U Z - 6 years, 5 months ago

Log in to reply

Nice Solution ... But Doesnt Needs To Expand Or C1-C3 .... Obeserve C1 and C3 are Identical in Second last Step Thus By Property Of Matrices ... Matrix Is 0.. I did In the same way... Again a nice Solution

Akshay Sant - 6 years, 5 months ago

I thought that not everyone knows the proprieties of determinant.

Abdulrahman El Shafei - 6 years, 5 months ago
Bill Bell
Jan 2, 2015

I'm not sure that any special tricks are needed. This one can be done with a formal algebra system:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...