∣ ∣ ∣ ∣ ∣ ∣ x − y ( x − y ) ( x + y ) ( x − y ) ( x 2 + x y + y 2 ) y y 2 y 3 x x 2 + x y x 3 + x 2 y + x y 2 ∣ ∣ ∣ ∣ ∣ ∣ = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Must have been fun to latex this :3
Problem Loading...
Note Loading...
Set Loading...
∣ ∣ ∣ ∣ ∣ ∣ x − y ( x − y ) ( x + y ) ( x − y ) ( x 2 + x y + y 2 ) y y 2 y 3 x x 2 + x y x 3 + x 2 y + x y 2 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ x − y ( x − y ) ( x + y ) ) ( x − y ) ( x 2 + x y + y 2 ) y y 2 y 3 x x ( x + y ) x ( x 2 + x y + y 2 ) ∣ ∣ ∣ ∣ ∣ ∣
By taking common factors ( x − y ) from C 1 , y from C 2 and x from C 3 .
x y ( x − y ) ∣ ∣ ∣ ∣ ∣ ∣ 1 ( x + y ) ( x 2 + x y + y 2 ) 1 y y 2 1 ( x + y ) ( x 2 + x y + y 2 ) ∣ ∣ ∣ ∣ ∣ ∣
One of the proprieties of determinant is when two rows or two columns are equal ,the determinant equals to 0
∵ C 1 = C 3 ∴ x y ( x − y ) [ 0 ] = 0