For those who don't know Part 7 (Determinants)

Algebra Level 3

x y y x ( x y ) ( x + y ) y 2 x 2 + x y ( x y ) ( x 2 + x y + y 2 ) y 3 x 3 + x 2 y + x y 2 = ? \left| \begin{matrix} x-y & y & x \\ (x-y)(x+y) & { y }^{ 2 } & { x }^{ 2 }+xy \\ (x-y)({ x }^{ 2 }+xy+{ y }^{ 2 }) & { y }^{ 3 } & { x }^{ 3 }+{ x }^{ 2 }y+x{ y }^{ 2 } \end{matrix} \right| = \text{?}

0 x x ( x y ) (x-y) x y ( x y ) xy(x-y)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x y y x ( x y ) ( x + y ) y 2 x 2 + x y ( x y ) ( x 2 + x y + y 2 ) y 3 x 3 + x 2 y + x y 2 x y y x ( x y ) ( x + y ) ) y 2 x ( x + y ) ( x y ) ( x 2 + x y + y 2 ) y 3 x ( x 2 + x y + y 2 ) \quad \quad \quad \quad \quad \left| \begin{matrix} x-y & y & x \\ (x-y)(x+y) & { y }^{ 2 } & { x }^{ 2 }+xy \\ (x-y)({ x }^{ 2 }+xy+{ y }^{ 2 }) & { y }^{ 3 } & { x }^{ 3 }+{ x }^{ 2 }y+x{ y }^{ 2 } \end{matrix} \right| \\ \quad \quad \quad \quad \quad \left| \begin{matrix} x-y & y & x \\ (x-y)(x+y)) & { y }^{ 2 } & { x(x }+y) \\ (x-y)({ x }^{ 2 }+xy+{ y }^{ 2 }) & { y }^{ 3 } & { x(x }^{ 2 }+{ x }y+{ y }^{ 2 }) \end{matrix} \right|

By taking common factors ( x y ) (x-y) from C 1 { C }_{ 1 } , y from C 2 { C }_{ 2 } and x from C 3 { C }_{ 3 } .

x y ( x y ) 1 1 1 ( x + y ) y ( x + y ) ( x 2 + x y + y 2 ) y 2 ( x 2 + x y + y 2 ) xy(x-y)\left| \begin{matrix} 1 & 1 & 1 \\ (x+y) & { y } & { (x }+y) \\ ({ x }^{ 2 }+xy+{ y }^{ 2 }) & { y }^{ 2 } & { (x }^{ 2 }+{ x }y+{ y }^{ 2 }) \end{matrix} \right|

One of the proprieties of determinant is when two rows or two columns are equal ,the determinant equals to 0 0

C 1 = C 3 x y ( x y ) [ 0 ] = 0 \because { C }_{ 1 }={ C }_{ 3 }\\ \therefore xy(x-y)[0]=\boxed { 0 }

Must have been fun to latex this :3

Trevor Arashiro - 6 years, 2 months ago
  • If we look closely enough, we can figure it out that the first column and the third column are equal.
  • The third column is the result of the first column times ( x x y ) ( \frac{x}{x - y} ) .
  • As result, when two or more columns are equal, the determinant is zero.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...