What kind of Binomial is this?

Algebra Level 5

1 + 2 3 ( 1 2 ) 1 + 2 × 5 3 × 6 ( 1 2 ) 2 + 2 × 5 × 8 3 × 6 × 9 ( 1 2 ) 3 + 1 + \frac {2}{3} \left ( \frac 1 2 \right )^1 + \frac {2 \times 5}{3 \times 6} \left ( \frac 1 2 \right )^2 + \frac {2 \times 5 \times 8}{3 \times 6 \times 9} \left ( \frac 1 2 \right )^3 + \cdots

If the series above can be stated in the form a 1 / b a^{1/b} for coprime positive integers a a and b b , what is the value of a + b ? a+b?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aditya Raut
Mar 30, 2015

What kind of Binomial? Well that's a binomial with a fractional (and negative) index...

( 1 x ) n = k = 0 ( n + r 1 r ) x r (1-x)^{-n} = \displaystyle \sum_{k=0}^{\infty} \dbinom{n+r-1}{r} x^r


( 1 1 2 ) 2 3 = 1 + ( 2 3 ) ( 1 2 ) + 2 3 5 3 2 ! ( 1 2 ) 2 + 2 3 5 3 8 3 3 ! ( 1 2 ) 3 + . . . . \Bigl( 1 - \dfrac{1}{2} \Bigr) ^\frac{-2}{3} = 1+ \Bigl(\frac{-2}{3}\Bigr)\Bigl(\dfrac{-1}{2}\Bigr) + \dfrac{\frac{-2}{3} \frac{-5}{3} }{2!} \Bigl(\dfrac{-1}{2} \Bigr) ^2 + \dfrac{\frac{-2}{3} \frac{-5}{3} \frac{-8}{3}}{3!} \Bigl(\dfrac{-1}{2}\Bigr)^3 +....

That's what is asked in the problem, but in the form

= 1 + 2 3 ( 1 2 ) 1 + 2 × 5 3 × 6 ( 1 2 ) 2 + 2 × 5 × 8 3 × 6 × 9 ( 1 2 ) 3 + . . . . \quad = 1 + \dfrac{2}{3} \Bigl(\frac{1}{2} \Bigr)^1+ \dfrac{2\times 5}{3\times 6} \Bigl(\frac{1}{2}\Bigr)^2+\dfrac{2\times 5\times 8}{3\times 6\times 9} \Bigl(\frac{1}{2}\Bigr)^3+....

which is just what is asked, so answer is ( 1 1 2 ) 2 3 = 2 2 3 = 4 1 3 \Bigl(1-\frac{1}{2}\Bigr)^{\frac{-2}{3}} = 2^{\dfrac{2}{3}} = 4^{\dfrac{1}{3}}

Answer 4 + 3 = 7 4+3=\boxed{7}

Naren Bhandari
Feb 28, 2018

Recall that for x < 1 |x| <1
( 1 + x ) 1 n = 1 + n x + n ( n 1 ) x 2 2 ! + n ( n 1 ) ( n 2 ) x 3 3 ! + ( 1 + x ) 1 n = 1 + 2 3 ( 1 2 ) + 2 × 5 3 × 6 ( 1 2 ) 2 + 2 × 5 × 8 3 × 6 × 9 ( 1 2 ) 3 \begin{aligned} & (1+ x)^{\frac{1}{n}} = 1 + nx + \frac{n(n-1)x^2}{2!} + \frac{n(n-1)(n-2)x^3}{3!} + \cdots \\& (1+x)^{\frac{1}{n}} = 1 + \frac{2}{3}\left(\frac{1}{2}\right) + \frac{2\times 5}{3\times 6}\left(\frac{1}{2}\right)^2 + \frac{2\times 5\times 8}{3\times 6\times 9 }\left(\frac{1}{2}\right)^3 \end{aligned}

Now on comparing we note that n x = 2 3 ( 1 2 ) = 1 3 n ( n 1 ) x 2 2 ! = 2 × 5 3 × 6 ( 1 2 ) 2 = 5 3 × 6 × 2 ( n x ) ( n x x ) 2 = 5 18 × 2 n x x = 5 6 x = 5 6 + 1 3 = 1 2 \begin{aligned}& nx = \frac{2}{3}\left(\frac{1}{2}\right) = \frac{1}{3}\\& \frac{n(n-1)x^2}{2!}= \frac{2\times 5}{3\times 6}\left(\frac{1}{2}\right)^2 = \frac{5}{3\times 6\times 2} \\& \frac{(nx)(nx -x)}{2} = \frac{5}{18\times 2 } \\& nx-x = \frac{5}{6} \qquad x = - \frac{5}{6} + \frac{1}{3} = - \frac{1}{2} \end{aligned} plugging the value of x x in first equation we get n x = 1 3 n = 2 3 nx = \frac{1}{3} \qquad n = -\frac{ 2}{3}

Hence the infinite series can be expressed as ( 1 + x ) 1 n = 1 + n x + n ( n 1 ) x 2 2 ! + n ( n 1 ) ( n 2 ) x 3 3 ! + ( 1 1 2 ) 2 3 = 1 + 2 3 ( 1 2 ) + 2 × 5 3 × 6 ( 1 2 ) 2 + 2 × 5 × 8 3 × 6 × 9 ( 1 2 ) 3 4 1 3 = 1 + 2 3 ( 1 2 ) + 2 × 3 3 × 6 ( 1 2 ) 2 + 2 × 3 × 8 3 × 6 × 9 ( 1 2 ) 3 + \begin{aligned} & (1 +x)^{\frac{1}{n}} = 1 + nx + \frac{n(n-1)x^2}{2!} + \frac{n(n-1)(n-2)x^3}{3!} + \cdots \\& (1-\frac{1}{2})^{-\frac{2}{3}} = 1 + \frac{2}{3}\left(\frac{1}{2}\right) + \frac{2\times 5}{3\times 6}\left(\frac{1}{2}\right)^2 + \frac{2\times 5\times 8}{3\times 6\times 9 }\left(\frac{1}{2}\right)^3 \\& 4^{\frac{1}{3}} = 1 + \frac{2}{3}\left(\frac{1}{2}\right) + \frac{2\times 3}{3\times 6}\left(\frac{1}{2}\right)^2 + \frac{2\times 3 \times 8}{3\times 6\times 9}\left(\frac{1}{2}\right)^3 \cdots + \end{aligned}

Since 4 4 and 3 3 are co-prime integers So a + b = 7 a+b = \boxed{7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...