Force from Potentials

The electric field E \vec{E} and magnetic flux density B \vec{B} can generally be written in terms of a scalar electric potential V V and a vector magnetic potential A \vec{A} .

E = V A t B = × A \vec{E} = -\nabla V - \frac{\partial{\vec{A}}}{\partial{t}} \\ \vec{B} = \nabla \times \vec{A}

Suppose the potentials are the following (depending on three space variables and one time variable):

V ( x , y , z , t ) = x t + y 2 + z 2 t 2 A ( x , y , z , t ) = ( A x , A y , A z ) = ( x 2 y , z + t , y z t ) V(x,y,z,t) = x t + y^2 + z^2 t^2 \\ \vec{A}(x,y,z,t) = (A_x, A_y, A_z) = (x^2 y, z + t, y z t)

There is a particle with charge q = + 1 q = +1 . At time t = 2 t = 2 , the particle's position and velocity are:

( x , y , z ) = ( 4 , 1 , 2 ) ( v x , v y , v z ) = ( 1 , 3 , 2 ) (x,y,z) = (4,1,2) \\ (v_x, v_y, v_z) = (-1,3,2)

What is the magnitude of the force on the particle at that time?

Bonus: The beginning of the "classical gauge theory" section of this wikipedia page is an interesting read.


The answer is 58.29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

B \vec B not magnetic field , but magnetic flux density or magnetic induction .

E = V A t = ( i ^ t + j ^ ( 2 y + 1 ) + k ^ ( 2 z t 2 + y z ) ) \vec E=-\vec \nabla V-\dfrac{\partial \vec A}{\partial t}=-\left (\hat i t+\hat j (2y+1)+\hat k (2zt^2+yz)\right ) .

Substituting values, E = ( 2 i ^ + 3 j ^ + 18 k ^ ) \vec E=-(2\hat i+3\hat j+18\hat k) .

B = × A = i ^ ( z t 1 ) k ^ x 2 \vec B=\vec \nabla \times \vec A=\hat i (zt-1)-\hat k x^2

Substituting values B = 3 i ^ 16 k ^ v × B = 48 i ^ 10 j ^ 9 k ^ \vec B=3\hat i-16\hat k\implies \vec v\times \vec B=-48\hat i-10\hat j-9\hat k

So, force F = q ( E + v × B ) = ( 50 i ^ + 13 j ^ + 27 k ^ ) F = 5 0 2 + 1 3 2 + 2 7 2 58.292366 \vec F=q(\vec E+\vec v\times \vec B) =-(50\hat i+13\hat j+27\hat k) \implies |\vec F|=\sqrt {50^2+13^2+27^2}\approx \boxed {58.292366} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...