Foundations, part 12

12 8 100 m o d 153 = ? \large 128^{100} \bmod 153 = \, ?

For more , try this set .

50 67 16 33

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Euler's Theorem

12 8 100 12 8 100 m o d ϕ ( 153 ) (mod 153) Since gcd ( 128 , 153 ) = 1 , Euler’s theorem applies. 12 8 100 m o d 96 (mod 153) Euler’s totient function ϕ ( 153 ) = 96 12 8 4 (mod 153) ( 153 25 ) 4 (mod 153) 2 5 4 (mod 153) 62 5 2 (mod 153) ( 4 × 153 + 13 ) 2 (mod 153) 1 3 2 (mod 153) 169 (mod 153) 16 (mod 153) \begin{aligned} 128^{100} & \equiv 128^{\color{#3D99F6}100 \bmod \phi(153)} \text{ (mod 153)} & \small \color{#3D99F6} \text{Since }\gcd(128, 153)=1 \text{, Euler's theorem applies.} \\ & \equiv 128^{\color{#3D99F6}100 \bmod 96} \text{ (mod 153)} & \small \color{#3D99F6} \text{Euler's totient function }\phi(153)=96 \\ & \equiv 128^{\color{#3D99F6}4} \text{ (mod 153)} \\ & \equiv (153-25)^4 \text{ (mod 153)} \\ & \equiv 25^4 \text{ (mod 153)} \\ & \equiv 625^2 \text{ (mod 153)} \\ & \equiv (4\times 153 + 13)^2 \text{ (mod 153)} \\ & \equiv 13^2 \text{ (mod 153)} \\ & \equiv 169 \text{ (mod 153)} \\ & \equiv \boxed{16} \text{ (mod 153)} \end{aligned}

Tapas Mazumdar
May 8, 2017

Relevant wiki: Euler's Theorem

12 8 100 m o d 153 = 12 8 100 m o d ϕ ( 153 ) m o d 153 gcd ( 128 , 153 ) = 1 , hence we can apply Euler’s theorem = 12 8 100 m o d 96 m o d 153 As ϕ ( 153 ) = 96 = 12 8 4 m o d 153 = 1638 4 2 m o d 153 = ( 16371 13 ) 2 m o d 153 16371 is divisible by 153 = 1 3 2 m o d 153 = 16 \begin{aligned} 128^{100} \bmod{153} &= 128^{100 \ {\color{#3D99F6} \bmod{ \phi (153)}}} \bmod{153} & \small {\color{#3D99F6} \text{gcd } (128,153) =1 ,\text{ hence we can apply Euler's theorem}} \\ &= 128^{100 \ \bmod{96}} \bmod{153} & \small {\color{#3D99F6} \text{As } \phi (153) = 96 } \\ &= 128^4 \bmod{153} \\ &= 16384^2 \bmod{153} \\ &= {(16371-13)}^2 \bmod{153} & \small {\color{#3D99F6} 16371 \text{ is divisible by } 153} \\ &= 13^2 \bmod{153} \\ &= \boxed{16} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...