Foundations, part 2

Algebra Level pending

If ( 1 + 1 x 2 ) 3 = ( 1 + 1 x 3 ) 2 \left(1+\dfrac{1}{x^2}\right)^3 = \left(1+\dfrac{1}{x^3}\right)^2 for x 0 x\neq 0 , find x + 1 x x+\dfrac{1}{x} .

For more , Try this set


The answer is 0.667.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 21, 2017

( 1 + 1 x 2 ) 3 = ( 1 + 1 x 3 ) 2 ( x 2 + 1 x 2 ) 3 = ( x 3 + 1 x 3 ) 2 ( x 2 + 1 ) 3 = ( x 3 + 1 ) 2 x 6 + 3 x 4 + 3 x 2 + 1 = x 6 + 2 x 3 + 1 3 x 4 2 x 3 + 3 x 2 = 0 Since x 0 3 x 2 2 x + 3 = 0 Dividing both sides by x 3 x 2 + 3 x = 0 x + 1 x = 2 3 0.667 \begin{aligned} \left(1+\frac 1{x^2}\right)^3 & = \left(1+\frac 1{x^3}\right)^2 \\ \left(\frac {x^2+1}{x^2}\right)^3 & = \left(\frac {x^3+1}{x^3}\right)^2 \\ \left(x^2+1\right)^3 & = \left(x^3+1\right)^2 \\ x^6 + 3x^4 + 3x^2 + 1 & = x^6 + 2x^3+ 1 \\ 3x^4 - 2x^3 + 3x^2 & = 0 & \small \color{#3D99F6} \text{Since }x \ne 0 \\ 3x^2 - 2x + 3 & = 0 & \small \color{#3D99F6} \text{Dividing both sides by }x \\ 3x - 2 + \frac 3x & = 0 \\ \implies x + \frac 1x & = \frac 23 \approx \boxed{0.667} \end{aligned}

Rahil Sehgal
Mar 21, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...