Foundations, part 3

Algebra Level pending

P ( x , y , z ) = max ( x , y ) + min ( y , z ) Q ( x , y , z ) = max ( y , z ) + min ( x , y ) R ( x , y , z ) = max ( x , y , z ) S ( x , y , z ) = min ( x , y , z ) T ( x , y , z ) = max ( x , z ) min ( y , z ) U ( x , y , z ) = max ( y , z ) min ( x , y ) \begin{aligned} P\left(x,y,z\right) & = \max\left(x,y\right) + \min\left(y,z\right) \\ Q\left(x,y,z\right) & = \max\left(y,z\right) + \min\left(x,y\right) \\ R\left(x,y,z\right) & = \max\left(x,y,z\right) \\ S\left(x,y,z\right) & = \min\left(x,y,z\right) \\ T\left(x,y,z\right) & = \max\left(x,z\right) - \min\left(y,z\right) \\ U\left(x,y,z\right) & = \max\left(y,z\right) - \min\left(x,y\right) \end{aligned}

Functions P P , Q Q , R R , S S , T T , and U U are defined as above, where max ( a , b , ) = \max\left(a,b,\cdots\right) = largest of all numbers and min ( a , b , ) = \min\left(a,b,\cdots\right) = smallest of all numbers.

For x = 1 x = 1 , y = 2 y = 2 , and z = 3 z = 3 , which of the options is less than 1?

For more , try this set .

Q ( x , y , z ) + U ( x , y , z ) R ( x , y , z ) + T ( x , y , z ) \dfrac{Q\left(x,y,z\right) + U\left(x,y,z\right)}{R\left(x,y,z\right) + T\left(x,y,z\right)} Q ( x , y , z ) U ( x , y , z ) 2 × S ( x , y , z ) \dfrac{Q\left(x,y,z\right) - U\left(x,y,z\right)}{2\times S\left(x,y,z\right)} Q ( x , y , z ) R ( x , y , z ) + S ( x , y , z ) \dfrac{Q\left(x,y,z\right)}{R\left(x,y,z\right) + S\left(x,y,z\right)} U ( x , y , z ) R ( x , y , z ) + S ( x , y , z ) \dfrac{U\left(x,y,z\right)}{R\left(x,y,z\right) + S\left(x,y,z\right)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...