Foundations, part 1

Algebra Level 3

3 log 81 80 + 5 log 25 24 + 7 log 16 15 = ? 3\log\dfrac{81}{80} + 5\log\dfrac{25}{24} + 7\log\dfrac{16}{15} = \, ?

For more , Try this set

0 log 3 \log 3 1 log 2 \log 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 14, 2017

x = 3 log 81 80 + 5 log 25 24 + 7 log 16 15 = log ( 81 80 ) 3 + log ( 25 24 ) 5 + log ( 16 15 ) 7 = log ( 8 1 3 2 5 5 1 6 7 8 0 3 2 4 5 1 5 7 ) = log ( 3 12 5 10 2 28 2 12 5 3 2 15 3 5 3 7 5 7 ) = log ( 2 28 3 12 5 10 2 27 3 12 5 10 ) = log 2 \begin{aligned} x & = 3\log \frac {81}{80} + 5 \log \frac {25}{24} + 7 \log \frac {16}{15} \\ & = \log \left( \frac {81}{80} \right)^3 + \log \left( \frac {25}{24} \right)^5 + \log \left( \frac {16}{15} \right)^7 \\ & = \log \left( \frac {81^3\cdot 25^5 \cdot 16^7}{80^3\cdot 24^5 \cdot 15^7} \right) \\ & = \log \left( \frac {3^{12}\cdot 5^{10} \cdot 2^{28}}{2^{12}5^3\cdot 2^{15}3^5 \cdot 3^75^7} \right) \\ & = \log \left( \frac {2^{28} \cdot 3^{12}\cdot 5^{10}}{2^{27}\cdot 3^{12}\cdot 5^{10}} \right) \\ & = \boxed{\log 2} \end{aligned}

Ravneet Singh
Mar 14, 2017

Given expression can be written as log ( 81 80 ) 3 + log ( 25 24 ) 5 + log ( 16 15 ) 7 \log \left(\dfrac{81}{80}\right)^3 + \log \left(\dfrac{25}{24}\right)^5 + \log \left(\dfrac{16}{15}\right)^7

log [ 3 12 × 5 10 × 2 28 2 12 × 5 3 × 2 15 × 3 5 × 3 7 × 5 7 ] \implies\log \left[\dfrac{3^{12} \times 5^{10} \times 2^{28}}{2^{12} \times 5^3 \times 2^{15} \times 3^5 \times 3^7 \times 5^7}\right]

log 2 \implies\log 2

@Ravneet Singh Please delete the part 14 problem from the set as the problem is already deleted from brilliant..

Ankit Kumar Jain - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...