Four Equilateral Triangles Question

Geometry Level pending

In the image below, Δ A B C , Δ A D E , Δ B F G , Δ A F H \Delta ABC, \Delta ADE, \Delta BFG, \Delta AFH are equilateral triangles. S Δ C G B = 5 , S Δ E C A = 6 , S Δ A B H = 2 S_{\Delta CGB}=5, S_{\Delta ECA}=6, S_{\Delta ABH }=2 . Find the value of S Δ A B C S_{\Delta ABC}

(Image Not Drawn To Scale)


The answer is 8.4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

1st solution Let a = A B = B C = C A a=AB=BC=CA , x = A D = A E = A F x=AD=AE=AF , y = B F = B G = F G y=BF=BG=FG , z = A F = A H = F H z=AF=AH=FH . Let θ = B A D \theta=\angle BAD , φ = G B C \varphi=\angle GBC .

First we prepare some angle relations:
E A C = 60 C A D = C A B C A D = θ , \angle EAC=60{}^\circ -\angle CAD=\angle CAB-\angle CAD=\theta, A B F = 60 F B D = G B C F B D = φ , \angle ABF=60{}^\circ -\angle FBD=\angle GBC-\angle FBD=\varphi, A D B = D A C + A C D = ( 60 θ ) + 60 = 120 θ . \angle ADB=\angle DAC+\angle ACD=\left( 60{}^\circ -\theta \right)+60{}^\circ =120{}^\circ -\theta.

Now, on E C A \triangle ECA , [ E C A ] = 6 1 2 a x sin θ = 6 x = 12 a sin θ ( 1 ) \left[ ECA \right]=6\Rightarrow \dfrac{1}{2}ax\sin \theta =6\Rightarrow x=\dfrac{12}{a\sin \theta } \ \ \ \ \ (1) On C G B \triangle CGB , [ C G B ] = 5 1 2 a y sin φ = 5 y = 10 a sin φ ( 2 ) \left[ CGB \right]=5\Rightarrow \dfrac{1}{2}ay\sin \varphi =5\Rightarrow y=\dfrac{10}{a\sin \varphi } \ \ \ \ \ (2) On A B H \triangle ABH , [ A B H ] = 2 1 2 a z sin ( 60 θ ) = 2 z = 4 a sin ( 60 θ ) ( 3 ) \left[ ABH \right]=2\Rightarrow \dfrac{1}{2}az\sin \left( 60{}^\circ -\theta \right)=2\Rightarrow z=\dfrac{4}{a\sin \left( 60{}^\circ -\theta \right)} \ \ \ \ \ (3) By sine rule On A F B \triangle AFB , z sin φ = y sin θ ( 2 ) z sin φ = 10 a sin φ sin θ z = 10 a sin θ ( 4 ) \dfrac{z}{\sin \varphi }=\dfrac{y}{\sin \theta }\overset{\left( 2 \right)}{\mathop{\Rightarrow }}\,\dfrac{z}{\sin \varphi }=\dfrac{10}{a\sin \varphi \sin \theta }\Rightarrow z=\dfrac{10}{a\sin \theta } \ \ \ \ \ (4)

\ \ \

( 3 ) , ( 4 ) 10 a sin θ = 4 a sin ( 60 θ ) 5 sin ( 60 θ ) = 2 sin θ 5 ( 3 2 cos θ 1 2 sin θ ) = 2 sin θ 5 3 cos θ = 9 sin θ cot θ = 9 5 3 ( 5 ) \begin{aligned} \left( 3 \right),\left( 4 \right)\Rightarrow \dfrac{10}{a\sin \theta }=\dfrac{4}{a\sin \left( 60{}^\circ -\theta \right)} & \Leftrightarrow 5\sin \left( 60{}^\circ -\theta \right)=2\sin \theta \\ & \Leftrightarrow 5\left( \dfrac{\sqrt{3}}{2}\cos \theta -\dfrac{1}{2}\sin \theta \right)=2\sin \theta \\ & \Leftrightarrow 5\sqrt{3}\cos \theta =9\sin \theta \\ & \Leftrightarrow \cot \theta =\dfrac{9}{5\sqrt{3}} \ \ \ \ \ (5)\\ \end{aligned} By sine rule On A D B \triangle ADB , x sin 60 = a sin ( 120 θ ) ( 1 ) 12 a sin θ sin 60 = a sin ( 120 θ ) α 2 = 8 3 sin ( 120 θ ) sin θ ( 6 ) \dfrac{x}{\sin 60{}^\circ }=\dfrac{a}{\sin \left( 120{}^\circ -\theta \right)}\overset{\left( 1 \right)}{\mathop{\Rightarrow }}\,\dfrac{12}{a\sin \theta \cdot \sin 60{}^\circ }=\dfrac{a}{\sin \left( 120{}^\circ -\theta \right)}\Rightarrow {{\alpha }^{2}}=\dfrac{8\sqrt{3}\sin \left( 120{}^\circ -\theta \right)}{\sin \theta } \ \ \ \ \ (6) Finally, for the area of A B C \triangle ABC , [ A B C ] = a 2 3 4 = ( 6 ) 3 4 8 3 sin ( 120 θ ) sin θ = 6 3 2 cos θ + 1 2 sin θ sin θ = 3 3 cot θ + 3 = ( 5 ) 3 3 9 5 3 + 3 = 8.4 \begin{aligned} & \left[ ABC \right]=\dfrac{{{a}^{2}}\sqrt{3}}{4} \\ & \overset{\left( 6 \right)}{\mathop{=}}\,\dfrac{\sqrt{3}}{4}\cdot \dfrac{8\sqrt{3}\sin \left( 120{}^\circ -\theta \right)}{\sin \theta } \\ & =6\dfrac{\dfrac{\sqrt{3}}{2}\cos \theta +\dfrac{1}{2}\sin \theta }{\sin \theta } \\ & =3\sqrt{3}\cot \theta +3 \\ & \overset{\left( 5 \right)}{\mathop{=}}\,3\sqrt{3}\dfrac{9}{5\sqrt{3}}+3 \\ & =\boxed{8.4} \\ \end{aligned}


2nd solution We use the same notation as in the previous solution. It is easy to see that triangles with the same colour fill, or shading are congruent, i.e. A E C A D B B G C B F A A H B A F C \triangle AEC\cong \triangle ADB \ \ \ \ \ \triangle BGC\cong \triangle BFA \ \ \ \ \ \triangle AHB\cong \triangle AFC So, we have [ A B C ] = [ A D B ] + [ A F C ] + [ C F D ] = [ A E C ] + [ A H B ] + [ C F D ] = 6 + 2 + [ C F D ] = 8 + [ C F D ] ( 1 ) \begin{aligned} \left[ ABC \right] & =\left[ ADB \right]+\left[ AFC \right]+\left[ CFD \right] \\ & =\left[ AEC \right]+\left[ AHB \right]+\left[ CFD \right] \\ & =6+2+\left[ CFD \right] \\ & =8+\left[ CFD \right] \ \ \ \ \ (1)\\ \end{aligned} The only thing left to find is [ C F D ] \left[ CFD \right] . Let’s work for this.

Triangles B F A BFA and B D F BDF share a common altitude from vertex B B , hence, [ B F A ] [ B D F ] = A F F D A F F D = [ B G C ] [ A D B ] [ A B F ] = [ B G C ] [ A E C ] [ B G C ] = 5 6 5 = 5 A F F D = 5 \begin{aligned} \dfrac{\left[ BFA \right]}{\left[ BDF \right]}=\dfrac{AF}{FD} & \Rightarrow \dfrac{AF}{FD}=\dfrac{\left[ BGC \right]}{\left[ ADB \right]-\left[ ABF \right]}=\dfrac{\left[ BGC \right]}{\left[ AEC \right]-\left[ BGC \right]}=\dfrac{5}{6-5}=5 \\ & \Rightarrow \dfrac{AF}{FD}=5 \\ \end{aligned} Furthermore, triangles A F C AFC and C F D CFD share a common altitude from vertex C C , hence, [ A F C ] [ C F D ] = A F F D 2 [ C F D ] = 5 [ C F D ] = 0.4 ( 2 ) \dfrac{\left[ AFC \right]}{\left[ CFD \right]}=\dfrac{AF}{FD}\Rightarrow \dfrac{2}{\left[ CFD \right]}=5\Rightarrow \left[ CFD \right]=0.4 \ \ \ \ \ (2) Finally, ( 1 ) , ( 2 ) [ A B C ] = 8 + 0.4 = 8.4 \left( 1 \right),\left( 2 \right)\Rightarrow \left[ ABC \right]=8+0.4=\boxed{8.4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...