Four in Five

Geometry Level 3

The two regular pentagons are congruent. Which inscribed square is larger?

The left square The right square They are both equal

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Apr 5, 2021

Label the diagram as follows:

Let the side of each pentagon be 1 1 , let the side of the left square be s 1 s_1 , and let the side of the right square be s 2 s_2 . Also, let A C = x AC = x , so that C D = 1 x CD = 1 - x .

Since the interior angle of a regular pentagon is 108 ° 108° , C D E = F G H = 108 ° \angle CDE = \angle FGH = 108° and B A C = 108 ° 2 = 54 ° \angle BAC = \frac{108°}{2} = 54° , which by corresponding angles means that D C E = B A C = 54 ° \angle DCE = \angle BAC = 54° and C E D = 180 ° E C D E D C = 18 ° \angle CED = 180° - \angle ECD - \angle EDC = 18° .

Then from right A B C \triangle ABC , sin 54 ° = s 1 2 x \sin 54° = \cfrac{s_1}{2x} , and from the law of sines on C D E \triangle CDE , s 1 sin 108 ° = 1 x sin 18 ° \cfrac{s_1}{\sin 108°} = \cfrac{1 - x}{\sin 18°} , and these two equations solve to s 1 1.060 s_1 \approx 1.060 .

On the right side, G F H = 1 2 ( 108 ° 90 ° ) = 9 ° \angle GFH = \frac{1}{2}(108° - 90°) = 9° and F H G = 180 ° G F H F G H = 63 ° \angle FHG = 180° - \angle GFH - \angle FGH = 63° .

Then from the law of sines on F G H \triangle FGH , s 2 sin 108 ° = 1 sin 63 ° \cfrac{s_2}{\sin 108°} = \cfrac{1}{\sin 63°} , which solves to s 2 1.067 s_2 \approx 1.067 .

Since s 2 > s 1 s_2 > s_1 , the right square is larger.

brilliant! However, it is difficult to estimate sin108 and sin63 for me.

Shinnosuke Ikuta - 1 month, 2 weeks ago
Shinnosuke Ikuta
Apr 27, 2021

Davidさんのやり方にsinの値の出し方がなかったので書いておきます。 ググればすぐ出るものではなく、オリジナルだろうなというものを載せます! 黄金比φを使ってsin108を出しました。数式の書き方がわからないので説明のみ 五角形の一辺の片方の頂点Eから伸ばした延長線に隣の頂点Cから下ろした垂線の長辺をb,短辺をa、垂線の足をDとおきます。 また、五角形の一辺を1と置いたときに、対角線はφを取ります。これはそういうものと決まっています。 角Eは108°なので、sin108°をb/1と表せます。 加えて、三平方の定理によって a^2+b^2=1 (a+1)^2+b^2=φ^2 が得られます。 今回はsin108°=bなので、二つの式をbについて連立すれば、答えになります。 φ^4とφ^2がでてきますが、φの累乗はフィボナッチ数列にしたがって規則的な係数をとるので、思いの外計算は楽です。 参考になれば!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...