Four Kissing Circles

Geometry Level 2

What is the radius of the small, red circle?

3 ( 21 4 ) 7 \dfrac{3\big(\sqrt{21} - 4\big)}{7} 2 ( 21 4 ) 5 \dfrac{2\big(\sqrt{21} - 4\big)}{5} 3 ( 21 4 ) 5 \dfrac{3\big(\sqrt{21} - 4\big)}{5} 3 ( 21 3 ) 5 \dfrac{3\big(\sqrt{21} - 3\big)}{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ahmad Saad
Mar 20, 2016

hello, can please write the solution using the decartes theorem

abhishek alva - 4 years, 8 months ago
Edge Glory
Aug 26, 2017

By Descarte's Circle Theorem,

To get the curvature of the three circles, just get the reciprocal of their radii. Those shall be your k 1, k 2, and k_3.

k_4=(1/2)+(1/2)+(1/3)+2sqrt[(1/2 * 1/2) + (1/2 * 1/3) + (1/2 * 1/3)]

k_4=4/3 + 2sqrt[(1/4) + (1/6) + (1/6)]

k_4=4/3 + 2sqrt(7/12)

k_4=4/3 + sqrt(21)/3

k_4=[4+sqrt(21)]/3

Note that since the circle is externally tangent to the three larger circles, its curvature is positive.

[4+sqrt(21)]/3=1/r

r=3/[4+sqrt(21)]

Rationalize the denominator,

r={3[4-sqrt(21)]}/(-5)

r=[12-3sqrt(21)]/(-5)

r=[3sqrt(21)-12]/5

r={3[sqrt(21)-4]}/5

how did you get from 4/3 + 2sqrt(7/12) to 4/3 +sqrt(21)/3 ?

Denise L. - 3 years, 5 months ago

Log in to reply

To get rid of the fraction under the radical, multiply 7/12 by 3/3. This results in a perfect square in the denominator that can be removed from the radical.

4/3 + 2√(7/12) = 4/3 + 2√(21/36) = 4/3 + (2√21)/6 = 4/3 +3√21

Albert Fisher - 3 years, 5 months ago

Log in to reply

Sorry, messed up the last term:

4/3 + 2√(7/12) = 4/3 + 2√(21/36) = 4/3 + (2√21)/6 = 4/3 +√(21)/3

Albert Fisher - 3 years, 5 months ago
Mahdi Raza
Sep 13, 2020

A direct application of Descartes' Circle Theorem

1 r 4 = 1 r 1 + 1 r 2 + 1 r 3 ± 2 1 r 1 r 2 + 1 r 2 r 3 + 1 r 3 r 1 1 r 4 = 1 2 + 1 2 + 1 3 ± 2 1 ( 2 ) ( 2 ) + 1 ( 2 ) ( 3 ) + 1 ( 3 ) ( 2 ) = 4 3 + 2 7 12 = 4 3 + 7 3 = 4 + 21 3 r 4 = 3 21 + 4 r 4 = 3 ( 21 4 ) 5 \begin{aligned} \dfrac{1}{r_{4}} &= \dfrac{1}{r_{1}} + \dfrac{1}{r_{2}} + \dfrac{1}{r_{3}} \pm 2\sqrt{\dfrac{1}{r_{1}r_{2}} + \dfrac{1}{r_{2}r_{3}} + \dfrac{1}{r_{3}r_{1}}} \\ \\ \dfrac{1}{r_{4}} &= \dfrac{1}{2} + \dfrac{1}{2} + \dfrac{1}{3} \pm 2\sqrt{\dfrac{1}{(2)(2)} + \dfrac{1}{(2)(3)} + \dfrac{1}{(3)(2)}} \\ \\ &= \dfrac{4}{3} + 2\sqrt{\dfrac{7}{12}} \\ \\ &= \dfrac{4}{3} + \dfrac{\sqrt{7}}{\sqrt{3}} \\ \\ &= \dfrac{4 + \sqrt{21}}{3} \\ \\ r_{4} &= \dfrac{3}{\sqrt{21} + 4} \\ \\ r_{4} &= \boxed{\dfrac{3(\sqrt{21} - 4)}{5}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...