Four Leaf Clover

Calculus Level 5

Let a a and b b be the lengths of the semi major and semi minor axes of an ellipse, respectively and let e e be the eccentricity of the ellipse.

Find the area bounded by the locus of the midpoints of the chords of the ellipse which are also normal to the ellipse.

a 5 b e 4 π 4 ( a 2 + b 2 ) 2 \dfrac{a^5be^4\pi}{4(a^2+b^2)^2} a 5 b e 4 π 2 ( a 2 + b 2 ) 2 \dfrac{a^5be^4\pi}{2(a^2+b^2)^2} a 3 b e 2 π 4 ( a 2 + b 2 ) \dfrac{a^3be^2\pi}{4(a^2+b^2)} a 3 b e 2 π 2 ( a 2 + b 2 ) \dfrac{a^3be^2\pi}{2(a^2+b^2)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jul 2, 2019

The normal to the ellipse at the point ( a cos θ , b sin θ ) (a\cos\theta,b\sin\theta) has equation a x sin θ b y cos θ = ( a 2 b 2 ) sin θ cos θ ax\sin\theta - by\cos\theta \; = \; (a^2-b^2)\sin\theta\cos\theta which meets the ellipse again at the point ( a cos ϕ , b sin ϕ ) (a\cos\phi,b\sin\phi) , where a 2 sin θ cos ϕ b 2 cos θ sin ϕ = ( a 2 b 2 ) sin θ cos θ sin ( ϕ θ 2 ) [ a 2 sin θ sin ( ϕ + θ 2 ) + b 2 cos θ cos ( ϕ + θ 2 ) ] = 0 a 2 tan θ tan ( ϕ + θ 2 ) + b 2 = 0 \begin{aligned} a^2\sin\theta\cos\phi - b^2\cos\theta\sin\phi & = \; (a^2-b^2)\sin\theta\cos\theta \\ \sin\big(\tfrac{\phi-\theta}{2}\big)\left[a^2\sin\theta\sin\big(\tfrac{\phi+\theta}{2}\big) + b^2\cos\theta\cos\big(\tfrac{\phi+\theta}{2}\big)\right] & = \; 0 \\ a^2\tan\theta\tan\big(\tfrac{\phi+\theta}{2}\big) + b^2 & = \; 0 \end{aligned} This last equation can be solved to obtain tan 1 2 ϕ \tan\tfrac12\phi in terms of θ \theta , from which it is easy to express sin ϕ \sin\phi and cos ϕ \cos\phi in terms of θ \theta . The midpoint of this chord has coordinates ( X , Y ) (X,Y) , where X = 1 2 a ( cos θ + cos ϕ ) = a 3 ( a 2 b 2 ) sin 2 θ cos θ a 4 sin 2 θ + b 4 cos 2 θ Y = 1 2 b ( sin θ + sin ϕ ) = b 3 ( a 2 b 2 ) sin θ cos 2 θ a 4 sin 2 θ + b 4 cos 2 θ X \; = \; \tfrac12a(\cos\theta+\cos\phi) \; = \; \frac{a^3(a^2-b^2)\sin^2\theta\cos\theta}{a^4\sin^2\theta+b^4\cos^2\theta} \hspace{2cm} Y \; = \; \tfrac12b(\sin\theta+\sin\phi) \; =\; -\frac{b^3(a^2-b^2)\sin\theta\cos^2\theta}{a^4\sin^2\theta+b^4\cos^2\theta} Thus the area of the locus is 1 2 0 2 π [ X ( θ ) Y ( θ ) X ( θ ) Y ( θ ) ] d θ = 0 2 π 2 a 3 b 3 ( a 2 b 2 ) 2 sin 2 θ cos 2 θ ( a 4 + b 4 ( a 4 b 4 ) cos 4 θ ) 2 d θ = a b ( a 2 b 2 ) 2 π 2 ( a 2 + b 2 ) 2 = a 5 b e 4 π 2 ( a 2 + b 2 ) 2 \tfrac12\int_0^{2\pi}\big[X(\theta)Y'(\theta)-X'(\theta)Y(\theta)\big]\,d\theta \; = \; \int_0^{2\pi} \frac{2a^3b^3(a^2-b^2)^2\sin^2\theta\cos^2\theta}{(a^4+b^4 - (a^4-b^4)\cos4\theta)^2}\,d\theta \; = \; \frac{ab(a^2-b^2)^2\pi}{2(a^2+b^2)^2} \; = \; \frac{a^5be^4\pi}{2(a^2+b^2)^2} after some elementary contour integration.

Awesome solution, as ever. The penultimate form (before you substitute for e e ) shows that the area is quite a nice multiple of the area of the ellipse itself.

Any idea if this shape has a name? Either the specific case here or the locus of the midpoints of normal chords for a general curve. I wonder how it works out for an ellipsoid...

Chris Lewis - 1 year, 11 months ago

Log in to reply

Looks like a Quadrifolium

Digvijay Singh - 1 year, 11 months ago

Log in to reply

Yes, it looks like one, but I am not sure it is one. To start with, it is not symmetric in x x and y y I do not think that it is an asymmetrically squeezed quadrifolium, either, but I am looking into that...

Mark Hennings - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...