Four numbers and four equations

Algebra Level 3

Four real numbers satisfy the following equations. { a 2 + b 2 = 1 c 2 + d 2 = 1 a c + b d = 0 \begin{cases} a^2+b^2=1 \\ c^2+d^2=1 \\ ac+bd=0 \end{cases} Find the maximum possible value of a b + c d ab+cd .


The answer is 0.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Samuel Sturge
Sep 27, 2019

Let a = sin ( x ) , b = cos ( x ) , c = sin ( y ) , d = cos ( y ) a = \sin (x), b = \cos (x), c = \sin (y), d = \cos (y) . Then a c + b d = sin ( x ) sin ( y ) + cos ( x ) cos ( y ) = cos ( x y ) = 0 ac + bd = \sin(x)\sin(y) + \cos(x)\cos(y) = \cos (x - y) = 0 We have that x y = 0 ; x = y + 90 ( 2 n + 1 ) x - y = 0 ; x = y + 90(2n + 1) where n n is a non- negative integer. We then have a b + c d = sin ( x ) cos ( x ) + sin ( y ) cos ( y ) = sin ( 2 x ) + sin ( 2 y ) 2 = sin ( 180 ( 2 n + 1 ) + 2 y ) + sin ( 2 y ) 2 ab + cd = \sin(x)\cos(x) + \sin(y)\cos(y) = \frac{\sin(2x) + \sin(2y)}{2} = \frac{\sin(180(2n + 1) + 2y) + \sin(2y)}{2} . We have that sin ( 180 ( 2 n + 1 ) + 2 y ) = sin ( 180 ( 2 n + 1 ) ) cos ( 2 y ) + cos ( 180 ( 2 n + 1 ) ) sin ( 2 y ) = sin ( 2 y ) \sin(180(2n + 1) + 2y) = \sin(180(2n + 1))\cos(2y) + \cos(180(2n + 1))\sin(2y) = -\sin(2y) , since sin ( 180 k ) = 0 \sin(180k) = 0 and \cos(180(2k + 1)) = -1) where k k is a non- negative integer( these facts are immediately obvious when we look at the unit circle). So, sin ( 180 ( 2 n + 1 ) + 2 y ) + sin ( 2 y ) 2 = sin ( 2 y ) + sin ( 2 y ) 2 = 0 \frac{\sin(180(2n + 1) + 2y) + \sin(2y)}{2} = \frac{-\sin(2y) + \sin(2y)}{2} = 0 . Therefore, the only - and therefore maximum - value of a b + c d ab + cd is 0 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...