Four real numbers satisfy the following equations. Find the maximum possible value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let a = sin ( x ) , b = cos ( x ) , c = sin ( y ) , d = cos ( y ) . Then a c + b d = sin ( x ) sin ( y ) + cos ( x ) cos ( y ) = cos ( x − y ) = 0 We have that x − y = 0 ; x = y + 9 0 ( 2 n + 1 ) where n is a non- negative integer. We then have a b + c d = sin ( x ) cos ( x ) + sin ( y ) cos ( y ) = 2 sin ( 2 x ) + sin ( 2 y ) = 2 sin ( 1 8 0 ( 2 n + 1 ) + 2 y ) + sin ( 2 y ) . We have that sin ( 1 8 0 ( 2 n + 1 ) + 2 y ) = sin ( 1 8 0 ( 2 n + 1 ) ) cos ( 2 y ) + cos ( 1 8 0 ( 2 n + 1 ) ) sin ( 2 y ) = − sin ( 2 y ) , since sin ( 1 8 0 k ) = 0 and \cos(180(2k + 1)) = -1) where k is a non- negative integer( these facts are immediately obvious when we look at the unit circle). So, 2 sin ( 1 8 0 ( 2 n + 1 ) + 2 y ) + sin ( 2 y ) = 2 − sin ( 2 y ) + sin ( 2 y ) = 0 . Therefore, the only - and therefore maximum - value of a b + c d is 0