Four variable expression

Algebra Level 2

For positive real numbers a , b , c , d a,b,c,d , with a b c d = 1 abcd=1 , find the value of the expression 1 + a + a b 1 + a + a b + a b c + 1 + b + b c 1 + b + b c + b c d + 1 + c + c d 1 + c + c d + c d a + 1 + d + d a 1 + d + d a + d a b \frac {1+a+ab} {1+a+ab+abc} + \frac {1+b+bc} {1+b+bc+bcd} +\frac {1+c+cd} {1+c+cd+cda} +\frac {1+d+da} {1+d+da+dab}


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 16, 2020

X = 1 + a + a b 1 + a + a b + a b c + 1 + b + b c 1 + b + b c + b c d + 1 + c + c d 1 + c + c d + c d a + 1 + d + d a 1 + d + d a + d a b = 1 + a + a b 1 + a + a b + a b c + 1 + b + b c 1 + b + b c + b c d × a a + 1 + c + c d 1 + c + c d + c d a × a b a b + 1 + d + d a 1 + d + d a + d a b × a b c a b c = 1 + a + a b 1 + a + a b + a b c + a + a b + a b c a + a b + a b c + 1 + a b + a b c + 1 a b + a b c + 1 + a + a b c + 1 + a a b c + 1 + a + a b = 3 + 3 a + 3 a b + 3 a b c 1 + a + a b + a b c = 3 \begin{aligned} X & = \frac {1+a+ab}{1+a+ab+abc} + \frac {1+b+bc}{1+b+bc+bcd} + \frac {1+c+cd}{1+c+cd+cda} + \frac {1+d+da}{1+d+da+dab} \\ & = \frac {1+a+ab}{1+a+ab+abc} + \frac {1+b+bc}{1+b+bc+bcd} \blue{\times \frac aa} + \frac {1+c+cd}{1+c+cd+cda} \blue{\times \frac {ab}{ab}} + \frac {1+d+da}{1+d+da+dab} \blue{\times \frac {abc}{abc}} \\ & = \frac {1+a+ab}{1+a+ab+abc} + \frac {a+ab+abc}{a+ab+abc+1} + \frac {ab+abc+1}{ab+abc+1+a} + \frac {abc+1+a}{abc+1+a+ab} \\ & = \frac {3+3a+3ab+3abc}{1+a+ab+abc} \\ & = \boxed 3 \end{aligned}

Mark Hennings
Nov 16, 2020

Since a b c d = 1 abcd=1 we see that 1 + b + b c 1 + b + b c + b c d = a ( 1 + b + b c ) 1 + a + a b + a b c = a + a b + a b c 1 + a + a b + a b c 1 + c + c d 1 + c + c d + c d a = a b ( 1 + c + c d ) 1 + a + a b + a b c = 1 + a b + a b c 1 + a + a b + a b c 1 + d + d a 1 + d + d a + d a b = a b c ( 1 + d + d a ) 1 + a + a b + a b c = 1 + a + a b c 1 + a + a b + a b c \begin{aligned} \frac{1+b+bc}{1+b+bc+bcd} & = \; \frac{a(1+b+bc)}{1 + a + ab + abc} \; = \; \frac{a + ab + abc}{1 + a + ab + abc} \\ \frac{1 + c + cd}{1 + c + cd + cda} & = \; \frac{ab(1 + c + cd)}{1 + a + ab + abc} \; =\; \frac{1 + ab + abc}{1 + a + ab + abc} \\ \frac{1 + d + da}{1 + d + da + dab} & = \; \frac{abc(1 + d + da)}{1 + a + ab +abc} \; = \; \frac{1 + a + abc}{1 + a + ab + abc} \end{aligned} and hence 1 + a + a b 1 + a + a b + a b c + 1 + b + b c 1 + b + b c + b c d + 1 + c + c d 1 + c + c d + c d a + 1 + d + d a 1 + d + d a + d a b = ( 1 + a + a b ) + ( a + a b + a b c ) + ( 1 + a b + a b c ) + ( 1 + a + a b c ) 1 + a + a b + a b c = 3 \begin{aligned} \frac{1+a+ab}{1 + a + ab + abc} + \frac{1+b+bc}{1+b+bc+bcd} + \frac{1 + c + cd}{1 + c + cd + cda} + \frac{1 + d + da}{1 + d + da + dab} & = \; \frac{(1+a+ab)+(a + ab + abc)+(1 + ab+abc) + (1 + a +abc)}{1 + a + ab + abc} \\ & =\; \boxed{3} \end{aligned}

K T
Nov 17, 2020

The simple way: set a = b = c = d = 1 a=b=c=d=1 and the expression evaluates to 3. So if any answer is right, it must be 3.

In proving that this holds for arbitrary positive a , b , c , d a,b,c,d , I can't improve other solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...