Four Variables

Algebra Level 5

x 1 n 2 + 1 + x 2 n 2 + 2 + x 3 n 2 + 3 + x 4 n 2 + 4 = 1 n 2 \dfrac{x_1}{n^{2}+1} + \dfrac{x_2}{n^{2}+2} + \dfrac{x_3}{n^{2}+3} + \dfrac{x_4}{n^{2}+4} = \dfrac{1}{n^{2}}

Let x 1 x_1 , x 2 x_2 , x 3 x_3 , and x 4 x_4 be real numbers satisfying the equations above, where n { 1 , 2 , 3 , 4 } n \in \{ 1,2,3,4 \} .

If x 1 26 + x 2 27 + x 3 28 + x 4 29 \dfrac{x_1}{26} + \dfrac{x_2}{27} + \dfrac{x_3}{28} + \dfrac{x_4}{29} can be expressed as p q \dfrac{p}{q} ,

where p p and q q are relatively prime positive integers,

find p + q p+q .


The answer is 392.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hugh Sir
Oct 22, 2018

Let f ( x ) = x 1 x 2 + 1 + x 2 x 2 + 2 + x 3 x 2 + 3 + x 4 x 2 + 4 f(x) = \dfrac{x_1}{x^{2}+1} + \dfrac{x_2}{x^{2}+2} + \dfrac{x_3}{x^{2}+3} + \dfrac{x_4}{x^{2}+4} .

Then f ( ± 1 ) = 1 f(\pm 1) = 1 , f ( ± 2 ) = 1 4 f(\pm 2) = \dfrac{1}{4} , f ( ± 3 ) = 1 9 f(\pm 3) = \dfrac{1}{9} , and f ( ± 4 ) = 1 16 f(\pm 4) = \dfrac{1}{16} .

The expression to be determined is f ( 5 ) f(5) .

Let p ( x ) = ( x 2 + 1 ) ( x 2 + 2 ) ( x 2 + 3 ) ( x 2 + 4 ) p(x) = (x^{2}+1)(x^{2}+2)(x^{2}+3)(x^{2}+4) and q ( x ) = p ( x ) f ( x ) q(x) = p(x)f(x) .

Then for n = 1 , 2 , 3 , 4 n = 1,2,3,4 , we have q ( n ) = p ( n ) × 1 n 2 q(n) = p(n) \times \dfrac{1}{n^{2}} .

That is, p ( n ) n 2 q ( n ) = 0 p(n) - n^{2}q(n) = 0 .

We have p ( x ) x 2 q ( x ) = 0 p(x)-x^{2}q(x) = 0 is a 8-degree polynomial equation and its roots are ± 1 \pm 1 , ± 2 \pm 2 , ± 3 \pm 3 , and ± 4 \pm 4 .

That is, p ( x ) x 2 q ( x ) = C ( x 2 1 ) ( x 2 4 ) ( x 2 9 ) ( x 2 16 ) p(x)-x^{2}q(x) = C(x^{2}-1)(x^{2}-4)(x^{2}-9)(x^{2}-16) , where C C is a real number.

Putting x = 0 x = 0 , we have C = p ( 0 ) ( 1 ) × ( 4 ) × ( 9 ) × ( 16 ) = 1 × 2 × 3 × 4 1 × 4 × 9 × 16 = 1 24 C = \dfrac{p(0)}{(-1) \times (-4) \times (-9) \times (-16)} = \dfrac{1 \times 2 \times 3 \times 4}{1 \times 4 \times 9 \times 16} = \dfrac{1}{24} .

So p ( x ) x 2 q ( x ) = 1 24 ( x 2 1 ) ( x 2 4 ) ( x 2 9 ) ( x 2 16 ) p(x)-x^{2}q(x) = \dfrac{1}{24}(x^{2}-1)(x^{2}-4)(x^{2}-9)(x^{2}-16) .

Dividing by p ( x ) p(x) , we have

1 x 2 f ( x ) = 1 24 ( x 2 1 ) ( x 2 4 ) ( x 2 9 ) ( x 2 16 ) ( x 2 + 1 ) ( x 2 + 2 ) ( x 2 + 3 ) ( x 2 + 4 ) 1 - x^{2}f(x) = \dfrac{1}{24} \dfrac{(x^{2}-1)(x^{2}-4)(x^{2}-9)(x^{2}-16)}{(x^{2}+1)(x^{2}+2)(x^{2}+3)(x^{2}+4)} .

Putting x = 5 x = 5 , we have

1 25 f ( 5 ) = 1 24 24 × 21 × 16 × 9 26 × 27 × 28 × 29 = 2 377 1-25f(5) = \dfrac{1}{24} \dfrac{24 \times 21 \times 16 \times 9}{26 \times 27 \times 28 \times 29} = \dfrac{2}{377} .

So x 1 26 + x 2 27 + x 3 28 + x 4 29 = f ( 5 ) = 15 377 = p q \dfrac{x_1}{26} + \dfrac{x_2}{27} + \dfrac{x_3}{28} + \dfrac{x_4}{29} = f(5) = \dfrac{15}{377} = \dfrac{p}{q} .

Therefore, p + q = 15 + 377 = 392 p+q = 15+377 = 392 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...