Fourth power = negative numbers

What is i \sqrt{i} ?

i = 1 = 1 4 \sqrt{i} = \sqrt {\sqrt{-1}} = \sqrt[4]{-1} .

Solve with these formulas ( a b ) 2 = a 2 b 2 (ab)^{2} = a^{2}b^{2} , ( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^{2} = a^{2} + 2ab + b^{2} , and ( a b ) 2 = a 2 2 a b + b 2 (a-b)^{2} = a^{2} - 2ab + b^{2} .

1 2 ( 1 i ) \frac{1}{\sqrt{2}}(1-i) 1 2 ( 1 + 2 i ) \frac{1}{\sqrt{2}}(1+2i) 1 2 ( 1 + i ) \frac{1}{\sqrt{2}}(1+i)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

. .
Feb 4, 2021

Let's check the answers.

Step 1. 1 2 ( 1 i ) ( 1 2 ( 1 i ) ) 2 1 2 × 2 i = i \frac{1}{\sqrt{2}}(1-i) \rightarrow (\frac{1}{\sqrt{2}}(1-i))^{2} \Rightarrow \frac{1}{2} \times -2i = -i

Step 2. 1 2 ( 1 + i ) ( 1 2 ( 1 + i ) ) 2 1 2 × 2 i = i \frac{1}{\sqrt{2}}(1+i) \rightarrow (\frac{1}{\sqrt{2}}(1+i))^{2} \Rightarrow \frac{1}{2} \times 2i = i So, the answer is 1 2 ( 1 + i ) \frac{1}{\sqrt{2}}(1+i) .

Step 3. 1 2 ( 1 + 2 i ) ( 1 2 ( 1 + 2 i ) ) 2 1 2 × ( 3 + 4 i ) = 3 + 4 i 2 \frac{1}{\sqrt{2}}(1+2i) \rightarrow (\frac{1}{\sqrt{2}}(1+2i))^{2} \Rightarrow \frac{1}{2} \times (-3+4i) = \frac{-3+4i}{2}

Since Step 1. and Step 3. are incorrect, so Step 2. is correct.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...