1 x + 1 y + 1 z \frac{1}{x}+\frac{1}{y}+\frac{1}{z}

Algebra Level 2

a a , b b and c c are positive real numbers that satisfy a x = b y = c z = 125 , log 5 a b c = 3. a^x=b^y=c^z=125, \log_{5} abc=3. What is the value of 1 x + 1 y + 1 z ? \frac{1}{x}+\frac{1}{y}+\frac{1}{z}?

1 3 \frac{1}{3} 1 1 1 15 \frac{1}{15} 1 5 \frac{1}{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We have, a = 12 5 1 x , b = 12 5 1 y , c = 12 5 1 z a = 125^{\frac{1}{x}} , b = 125^{\frac{1}{y}} , c = 125^{\frac{1}{z}}

a b c = 12 5 1 x × 12 5 1 y × 12 5 1 z = 12 5 1 x + 1 y + 1 z abc = 125^{\frac{1}{x}} \times 125^{\frac{1}{y}} \times 125^{\frac{1}{z}} = 125^{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}

Taking log 5 \log_5 both sides,

log 5 a b c = log 5 12 5 1 x + 1 y + 1 z \log_5{abc} = \log_5{125^{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}}

3 = ( 1 x + 1 y + 1 z ) log 5 125 3 = (\frac{1}{x} + \frac{1}{y} + \frac{1}{z}) \log_5{125}

3 = ( 1 x + 1 y + 1 z ) × 3 3 = (\frac{1}{x} + \frac{1}{y} + \frac{1}{z})\times 3

1 x + 1 y + 1 z = 1 \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \boxed{1}

you rite

Chanchal Ahamed - 7 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...