The right reciprocal

Geometry Level 3

k = 1 44 cos k k = 1 44 sin k k = 1 44 sin k k = 1 44 cos k = ? \dfrac{\displaystyle\sum_{k=1}^{44}\cos{k^{\circ}}}{\displaystyle\sum_{k=1}^{44}\sin{k^{\circ}}}-\dfrac{\displaystyle\sum_{k=1}^{44}\sin{k^{\circ}}}{\displaystyle\sum_{k=1}^{44}\cos{k^{\circ}}}=\ ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Daniel Rabelo
Jun 2, 2015

k = 1 44 sin k º = k = 1 44 sin ( 45 º k º ) = k = 1 44 2 2 ( cos k º sin k º ) = \sum_{k=1}^{44} \sin kº =\sum_{k=1}^{44} \sin (45º-kº)=\sum_{k=1}^{44} \frac{\sqrt2}{2} (\cos kº - \sin kº)=

= 2 2 k = 1 44 ( cos k º sin k º ) =\frac{\sqrt2}{2}\sum_{k=1}^{44} (\cos kº - \sin kº)

then: k = 1 44 cos k º = ( 1 + 2 ) k = 1 44 sin k º \sum_{k=1}^{44} \cos kº =(1+\sqrt2)\sum_{k=1}^{44} \sin kº

then the problem is reduced to:

1 + 2 1 1 + 2 = 3 + 2 2 1 1 + 2 = 2 ( 1 + 2 ) ( 1 + 2 ) = 2. 1+\sqrt2 - \frac{1}{1+\sqrt2} = \frac{3+2\sqrt2-1}{1+\sqrt2} = 2\frac{(1+\sqrt2)}{(1+\sqrt2)}=2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...