d y d x = y + x y x \frac{dy}{dx}=\frac{y+x}{y-x}

Calculus Level 4

Consider the differential equation d y d x = y + x y x \dfrac{dy}{dx}=\dfrac{y+x}{y-x} .

Given that when x = 1 x=1 , y y can take the values 0 and 2, what is the product of the two possible values of y ( 5 ) y(5) ?


The answer is -24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

d y d x = y + x y x Let y = v x d y d x = v + x d v d x v + x d v d x = v x + x v x x v + x d v d x = v + 1 v 1 x d v d x = v + 1 v 1 v = 1 + 2 v v 2 v 1 v 1 1 + 2 v v 2 d v = 1 x d x 1 2 2 2 v 1 + 2 v v 2 d v = 1 x d x 1 2 ln ( 1 + 2 v v 2 ) = ln x + C where C is the constant of integration. ln ( 1 + 2 y x y 2 x 2 ) = 2 ln x + c 1 ln ( 1 + 2 y x y 2 x 2 ) + ln x 2 = c 1 ln ( x 2 + 2 x y y 2 ) = c 1 x 2 + 2 x y y 2 = c 2 Put x = 1 and y = 0 , 2 1 = c 2 x 2 + 2 x y y 2 1 = 0 Put x = 5 25 + 10 y y 2 1 = 0 y 2 10 y 24 = 0 \begin{aligned} \frac {dy}{dx} & = \frac {y+x}{y-x} & \small \color{#3D99F6} \text{Let }y = vx \implies \frac {dy}{dx} = v + x \frac {dv}{dx} \\ v + x \frac {dv}{dx} & = \frac {vx+x}{vx-x} \\ v + x \frac {dv}{dx} & = \frac {v+1}{v-1} \\ x \frac {dv}{dx} & = \frac {v+1}{v-1} - v \\ & = \frac {1+2v-v^2}{v-1} \\ \int \frac {v-1}{1+2v-v^2} dv & = \int \frac 1x dx \\ - \frac 12 \int \frac {2-2v}{1+2v-v^2} dv & = \int \frac 1x dx \\ - \frac 12 \ln \left(1+2v-v^2\right) & = \ln x + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ \ln \left(1 + \frac {2y}x - \frac {y^2}{x^2} \right) & = - 2\ln x + c_1 \\ \ln \left(1 + \frac {2y}x - \frac {y^2}{x^2} \right) + \ln x^2 & = c_1 \\ \ln \left(x^2 + 2xy - y^2 \right) & = c_1 \\ x^2 + 2xy - y^2 & = c_2 & \small \color{#3D99F6} \text{Put } x=1 \text{ and }y = 0, 2 \\ \implies 1 & = c_2 \\ \implies x^2 + 2xy - y^2 - 1 & = 0 & \small \color{#3D99F6} \text{Put } x=5 \\ 25 + 10y - y^2 - 1& = 0 \\ y^2 - 10y \color{#3D99F6} - 24 & = 0 \end{aligned}

By Vieta's formula , the products of roots of y ( 5 ) y(5) is 24 \boxed{\color{#3D99F6}-24} .

Nick Turtle
Nov 6, 2017

Start from the original equation d y d x = y + x y x \frac{dy}{dx}=\frac{y+x}{y-x} .

Multiply both sides by ( y x ) d x (y-x)\ dx to get ( y x ) d y = ( y + x ) d x \displaystyle\int(y-x)\ dy=\displaystyle\int(y+x)\ dx .

Apply the linearity of integration: y d y x d y = y d x + x d x \displaystyle\int y\ dy-\displaystyle\int x\ dy=\displaystyle\int y\ dx+\displaystyle\int x\ dx .

This can be simplified to 1 2 y 2 x d y = y d x + 1 2 x 2 \frac{1}{2}y^2-\displaystyle\int x\ dy=\displaystyle\int y\ dx+\frac{1}{2}x^2 .

Manipulate to 1 2 y 2 1 2 x 2 = y d x + x d y \frac{1}{2}y^2-\frac{1}{2}x^2=\displaystyle\int y\ dx+\displaystyle\int x\ dy . Note that the right-hand side is equal to x y + C xy+C (integration by parts).

Finally, use the quadratic equation to find y = x ± 2 x 2 + C y=x±\sqrt{2x^2+C} . Using the initial conditions, we find C = 1 C=-1 .

Thus, the two possible values for y ( 5 ) y(5) is 12 12 and 2 -2 . The final answer is 24 -24 .

Even better,it is a homogenous differential equation. You could solve it by letting y/x=v.

Puneet Pinku - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...