Consider the differential equation d x d y = y − x y + x .
Given that when x = 1 , y can take the values 0 and 2, what is the product of the two possible values of y ( 5 ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Start from the original equation d x d y = y − x y + x .
Multiply both sides by ( y − x ) d x to get ∫ ( y − x ) d y = ∫ ( y + x ) d x .
Apply the linearity of integration: ∫ y d y − ∫ x d y = ∫ y d x + ∫ x d x .
This can be simplified to 2 1 y 2 − ∫ x d y = ∫ y d x + 2 1 x 2 .
Manipulate to 2 1 y 2 − 2 1 x 2 = ∫ y d x + ∫ x d y . Note that the right-hand side is equal to x y + C (integration by parts).
Finally, use the quadratic equation to find y = x ± 2 x 2 + C . Using the initial conditions, we find C = − 1 .
Thus, the two possible values for y ( 5 ) is 1 2 and − 2 . The final answer is − 2 4 .
Even better,it is a homogenous differential equation. You could solve it by letting y/x=v.
Problem Loading...
Note Loading...
Set Loading...
d x d y v + x d x d v v + x d x d v x d x d v ∫ 1 + 2 v − v 2 v − 1 d v − 2 1 ∫ 1 + 2 v − v 2 2 − 2 v d v − 2 1 ln ( 1 + 2 v − v 2 ) ln ( 1 + x 2 y − x 2 y 2 ) ln ( 1 + x 2 y − x 2 y 2 ) + ln x 2 ln ( x 2 + 2 x y − y 2 ) x 2 + 2 x y − y 2 ⟹ 1 ⟹ x 2 + 2 x y − y 2 − 1 2 5 + 1 0 y − y 2 − 1 y 2 − 1 0 y − 2 4 = y − x y + x = v x − x v x + x = v − 1 v + 1 = v − 1 v + 1 − v = v − 1 1 + 2 v − v 2 = ∫ x 1 d x = ∫ x 1 d x = ln x + C = − 2 ln x + c 1 = c 1 = c 1 = c 2 = c 2 = 0 = 0 = 0 Let y = v x ⟹ d x d y = v + x d x d v where C is the constant of integration. Put x = 1 and y = 0 , 2 Put x = 5
By Vieta's formula , the products of roots of y ( 5 ) is − 2 4 .