e 3 x + e 3 x e x + e x \frac{e^{3x}+e^{-3x}}{e^{x}+e^{-x}}

Algebra Level 2

If e 2 x = 7 , e^{2x}=7, what is the value of e 3 x + e 3 x e x + e x ? \frac{e^{3x}+e^{-3x}}{e^{x}+e^{-x}}?

44 7 \frac{44}{7} 42 7 \frac{42}{7} 41 7 \frac{41}{7} 43 7 \frac{43}{7}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Seemant Mishra
Jan 16, 2015

we get value of x by taking log to the base e on both sides to be ln (sqrt 7) when put this value in the eqn and using the property that e^ln(a) = a we get a simplified ans 43/7

e 3 x + e 3 x e x + e x \dfrac{e^{3x}+e^{-3x}}{e^{x}+e^{-x}}

= ( e x + e x ) ( e 2 x e 0 + e 2 x ) e x + e x =\dfrac{(e^x+e^{-x})(e^{2x}-e^0+e^{-2x})}{e^{x}+e^{-x}}

= e 2 x e 0 + e 2 x =e^{2x}-e^0+e^{-2x}

= 7 1 + 1 7 =7-1+\dfrac{1}{7}

= 43 7 =\dfrac{43}{7}

Note that a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) \boxed{a^3+b^3=(a+b)(a^2-ab+b^2)}

Where a = e x , b = e x a=e^x,b=e^{-x}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...