π 7 \frac{\pi}{7}

Geometry Level 3

Evaluate c o s π 7 c o s 2 π 7 + c o s 3 π 7 cos \frac{\pi}{7}-cos \frac{2\pi}{7}+cos \frac{3\pi}{7}

Don't use calculator


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Parag Zode
Jan 6, 2015

We know that c o s x = c o s ( π x ) cosx=-cos(\pi-x) and we also know that s i n x = s i n ( π x ) sinx=sin(\pi-x) . So we can write c o s x + c o s 3 x + c o s 5 x = s i n 6 x 2 s i n x . . . . . ( 1 ) cosx+cos3x+cos5x=\dfrac{sin6x}{2sinx}.....(1) Substituting x = π 7 x=\dfrac{\pi}{7} ,we get c o s π 7 + c o s 3 π 7 + c o s 5 π 7 = s i n 6 π 7 2 s i n π 7 . . . . . ( 2 ) cos\frac{\pi}{7}+cos\frac{3\pi}{7}+cos\frac{5\pi}{7}=\frac{sin6\frac{\pi}{7}}{2sin\frac{\pi}{7}}.....(2) ..and since c o s x = c o s ( π x ) cosx=-cos(\pi-x) ,so c o s 5 π 7 = c o s ( π 5 π 7 ) = c o s ( 2 π 7 ) cos\frac{5\pi}{7}=-cos\bigg(\pi-\frac{5\pi}{7}\bigg)=-cos\bigg(\frac{2\pi}{7}\bigg) .. Similarly , we convert s i n 6 π 7 sin\frac{6\pi}{7} by using the identity of s i n x sinx as mentioned above. We get s i n 6 π 7 = s i n π 7 sin\frac{6\pi}{7}=sin\frac{\pi}{7} . Now substituting it in equation ( 1 ) (1) ,we get c o s π 7 c o s 2 π 7 + c o s 3 π 7 = 1 2 cos\dfrac{\pi}{7}-cos\dfrac{2\pi}{7}+cos\dfrac{3\pi}{7}=\frac{1}{2} and that is equal to 0.5 \boxed{0.5}

Ravi Dwivedi
Jul 5, 2015

Moderator note:

Great! The multiplication by sin θ \sin \theta allows us to telescope the cosine arithmetic progression summation.

Mas Mus
May 5, 2015

Note that

sin ( π α ) = sin α , sin ( π + α ) = sin α , and cos ( π + α ) = cos α \sin(\pi-\alpha)=\sin\alpha,~~\sin(\pi+\alpha)=-\sin\alpha, ~~\text{and}~\cos(\pi+\alpha)=-\cos\alpha

cos π 7 cos 2 π 7 + cos 3 π 7 = cos π 7 + cos 9 π 7 + cos 3 π 7 \cos\dfrac{\pi}{7}-\cos\dfrac{2\pi}{7}+\cos\dfrac{3\pi}{7}=\cos\dfrac{\pi}{7}+\cos\dfrac{9\pi}{7}+\cos\dfrac{3\pi}{7}

A = 2 cos π 7 sin π 7 = sin 2 π 7 B = 2 cos 9 π 7 sin π 7 = sin 10 π 7 sin 8 π 7 = 3 π 7 + sin π 7 C = 2 cos 3 π 7 sin π 7 = sin 4 π 7 sin 2 π 7 = sin 3 π 7 sin 2 π 7 A + B + C = 2 sin π 7 ( cos π 7 + cos 9 π 7 + cos 3 π 7 ) = sin π 7 cos π 7 + cos 9 π 7 + cos 3 π 7 = 1 2 A=2\cos\dfrac{\pi}{7}\sin\dfrac{\pi}{7}=\sin\dfrac{2\pi}{7}\\B=2\cos\dfrac{9\pi}{7}\sin\dfrac{\pi}{7}=\sin\dfrac{10\pi}{7}-\sin\dfrac{8\pi}{7}=-\dfrac{3\pi}{7}+\sin\dfrac{\pi}{7}\\C=2\cos\dfrac{3\pi}{7}\sin\dfrac{\pi}{7}=\sin\dfrac{4\pi}{7}-\sin\dfrac{2\pi}{7}=\sin\dfrac{3\pi}{7}-\sin\dfrac{2\pi}{7}\\A+B+C=2\sin\dfrac{\pi}{7}\left(\cos\dfrac{\pi}{7}+\cos\dfrac{9\pi}{7}+\cos\dfrac{3\pi}{7}\right)=\sin\dfrac{\pi}{7}\\\cos\dfrac{\pi}{7}+\cos\dfrac{9\pi}{7}+\cos\dfrac{3\pi}{7}=\dfrac{1}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...