Fractal Area

Geometry Level 2

A fractal pattern is created in a square, beginning with 9 identical squares arranged in a plus sign pattern. At each step, every blue square that borders blue on exactly one edge is replaced with the plus sign pattern from the first step.

As this pattern continues indefinitely, what fraction of the larger square is shaded blue?

5 27 \frac{5}{27} 2 9 \frac{2}{9} 7 27 \frac{7}{27} 8 27 \frac{8}{27}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Andy Hayes
Mar 9, 2018

Consider one of the "arms" of the fractal square:

Call the blue area within this arm x . x. Then the fraction of the larger square that is blue is:

B = 4 x + 1 9 B=4x+\frac{1}{9}

Now consider that if we remove the two blue squares that are each 1 81 \frac{1}{81} of the larger square, we end up with three "arms" that are similar to the original arm shape, except they are each 1 9 \frac{1}{9} its size.

Thus, we can write an equation for x x recursively:

x 2 81 = 1 3 x x-\frac{2}{81}=\frac{1}{3}x

Solving this for x x gives 1 27 . \frac{1}{27}. Now returning to our equation for fraction of blue area:

B = 4 x + 1 9 = 4 27 + 1 9 = 7 27 . \begin{aligned} B &= 4x + \frac{1}{9} \\ &= \frac{4}{27}+\frac{1}{9} \\ &= \boxed{\frac{7}{27}}. \end{aligned}

Can you elaborate on the justification that each small arm is 1/9 the area? Thanks.

Win Treese - 3 years, 2 months ago

Log in to reply

Simply because the original square is divided into 3×3=9 sub-boxes, and so are those sub-boxes themselves.

D. V. - 3 years, 2 months ago

Really elegant! Kudos!

Dimitry Kachkovski - 3 years, 2 months ago
Chew-Seong Cheong
Mar 10, 2018

Considering the reduction of the blue area by stages as follows:

A b l u e = 1 4 9 4 9 2 × 4 4 9 3 × 4 × 3 4 9 4 × 4 × 3 2 4 9 5 × 4 × 3 3 = 1 4 9 16 3 4 16 3 5 16 3 6 16 3 7 = 1 4 9 16 3 4 k = 0 1 3 k = 1 4 9 16 3 4 ( 1 1 1 3 ) = 1 4 9 16 3 4 × 3 2 = 1 4 9 8 27 = 7 27 \begin{aligned} A_{\color{#3D99F6}blue} & = 1 - \frac 49 - \frac 4{9^2} \times 4 - \frac 4{9^3} \times 4 \times 3 - \frac 4{9^4} \times 4 \times 3^2 - \frac 4{9^5} \times 4 \times 3 ^3 - \cdots \\ & = 1 - \frac 49 - \frac {16}{3^4} - \frac {16}{3^5} - \frac {16}{3^6} - \frac {16}{3^7} - \cdots \\ & = 1 - \frac 49 - \frac {16}{3^4} \sum_{k=0}^\infty \frac 1{3^k} \\ & = 1 - \frac 49 - \frac {16}{3^4} \left(\frac 1{1-\frac 13}\right) \\ & = 1 - \frac 49 - \frac {16}{3^4} \times \frac 32 \\ & = 1 - \frac 49 - \frac 8{27} \\ & = \boxed{\dfrac 7{27}} \end{aligned}

Could you explain why the 1 divided by 3 to the power of k after the summation becomes 1 divided by 1 - 1/3?

Merijn van Moorsel - 3 years, 2 months ago

Log in to reply

It is a geometric series, the form of a geometric series is Sum = a / (1 - r) where a is the first term of the series, and r is the multiplicative factor that produces each subsequent term. In this case, when k = 0 we get 1, so a = 1 since that’s the first term, r is 1/3 since every subsequent term is 1/3 multiplied with the former. So we have 1/(1-1/3) You can look up geometric series to understand it better, there is also a derivation of them which is good practice to develop understanding!

Amun P - 3 years, 2 months ago

Log in to reply

thank you!

Merijn van Moorsel - 3 years, 2 months ago

Refer to geometric progressions . S n = k = 0 n a k = 1 a n + 1 1 a S_n = \displaystyle \sum_{k=0}^n a^k = \dfrac {1-a^{n+1}}{1-a} for a < 1 |a| < 1 . As n n \to \infty , S = 1 1 a S_\infty = \dfrac 1{1-a} .

Chew-Seong Cheong - 3 years, 2 months ago

Log in to reply

thank you!

Merijn van Moorsel - 3 years, 2 months ago

You're genius, bro.

Chanmonyrak Kong - 3 years, 2 months ago

Log in to reply

Thanks, bro...

Chew-Seong Cheong - 3 years, 2 months ago

Sir,could u pls explain the first step of ur solution were u have reduced the blue area??thanks!!

erica phillips - 3 years, 2 months ago

Log in to reply

Yes, the first 1 means it starts with a unit blue square. Then 1 4 9 1-\dfrac 49 is the first picture. Then each of the four 1 9 \dfrac 19 reduced by 4 9 \dfrac 49 , therefore 1 4 9 4 9 2 × 4 1-\dfrac 49 - \frac 4{9^2}\times 4 , the second picture and so on.

Chew-Seong Cheong - 3 years, 2 months ago

Log in to reply

U r seriously grt sir!!!

erica phillips - 3 years, 2 months ago

Did it by the same approach! Nice!

Vivek Pamnani - 3 years, 2 months ago
David Vreken
Mar 10, 2018

The fraction of the larger square that is shaded orange is O = 4 9 + 16 81 + 48 729 + 144 6561 O = \frac{4}{9} + \frac{16}{81} + \frac{48}{729} + \frac{144}{6561} \dots

Except for the first term 4 9 \frac{4}{9} , the other terms follow the geometric sequence x = 16 81 + 48 729 + 144 6561 = 16 81 + 3 9 ( 16 81 + 3 9 ( 16 81 x = \frac{16}{81} + \frac{48}{729} + \frac{144}{6561} \dots = \frac{16}{81} + \frac{3}{9}(\frac{16}{81} + \frac{3}{9}(\frac{16}{81} \dots .

Substituting x into itself gives x = 16 81 + 3 9 x x = \frac{16}{81} + \frac{3}{9}x and solves to x = 8 27 x = \frac{8}{27} .

Therefore, the fraction of the larger square that is shaded orange is O = 4 9 + x = 4 9 + 8 27 = 20 27 O = \frac{4}{9} + x = \frac{4}{9} + \frac{8}{27} = \frac{20}{27} .

The fraction of the larger square that is shaded blue must then be B = 1 O = 1 20 27 = 7 27 B = 1 - O = 1 - \frac{20}{27} = \boxed{\frac{7}{27}} .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
# https://brilliant.org/weekly-problems/2018-03-12/intermediate/?p=2
from fractions import Fraction
from math import sqrt

square = int(raw_input("How many identical squares (ex. 4,9,16...)?: ")) # ex. 9
sq = [x**2 for x in range(2,100,1)]
while square not in sq:
    square = int(raw_input('Please try again: '))

sections = int(raw_input("How many sections altered (some value < than number of identical squares?: ")) # ex. 4
x = [x for x in range(1,square+1)]
while sections not in x:
    sections = int(raw_input('Please try again: '))

sign = int(raw_input("How many squares altered in iteration 1?: "))  #     "+" sign   =  4
while sign not in x[:-1]:
    sign = int(raw_input('Please try again: '))


x = 1 - (float(sign)/square) - sum((float(sign)*sections) / sqrt(square)**(k+sqrt(square)) for k in range(1, 200))
print '\n\nFraction of the larger square shaded blue as pattern continues indefinitely = %s' \
    % Fraction(x).limit_denominator(1000)

Fraction of the larger square shaded blue as pattern continues indefinitely = 7/27

1 9 + 4 × 2 9 2 + 4 × 3 × 2 9 3 + 4 × 3 × 3 × 2 9 4 + . . . \;\;\;\;\;\;\boxed{\frac{1}{9}\;}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;4\;\;\times\;\;\boxed{\frac{2}{9^{2}}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;4\;\;\times\;\;3\;\;\times\;\;\boxed{\frac{2}{9^{3}}}\;\;\;\;\;\;\;\;\;+\;\;4\times3\times3\times\boxed{\frac{2}{9^{4}}}\;\;+\;\;.\;\;.\;\;.

- Consider the red boxes as incremental blue shade fraction of the larger square under each iteration, whose corresponding fractional values are the boxed ones beneath each. \boxed{ \begin{array} {l l} \text{- Consider the red boxes as incremental blue shade fraction of the larger square under each iteration, } \\ \text{ whose corresponding fractional values are the boxed ones beneath each. } \end{array} }

\therefore\; for each fractal pattern growth cycle iterated progressively, F r a c t i o n a l G r o w t h , F i = 3 i 2 × 2 9 i , i 2 , for each branch(4 in total) from the central node ( 1 9 ) o n i t h i t e r a t i o n ; {\color{#3D99F6}Fractional\;Growth}, F_{i}=\frac{{3^{i-2}}\times2}{9^{i}},\; \forall \; i \geq 2,\;\text{for each branch(4 in total) from the central node}\;\left ( \frac{1}{9} \right )\;on\; i^{th}\; iteration;

\therefore\; the corresponding infinite sum associated with this pattern is, F = ( 1 9 ) + ( 4 × 2 9 2 ) + ( 4 × 3 × 2 9 3 ) + ( 4 × 3 × 3 × 2 9 4 ) + ( 4 × 3 × 3 × 3 × 2 9 5 ) + . . . = ( 1 9 ) + ( 2 3 9 2 ) + ( 2 3 × 3 9 3 ) + ( 2 3 × 3 2 9 4 ) + ( 2 3 × 3 3 9 5 ) + . . . = ( 1 9 ) + [ ( 2 3 9 2 ) ( 1 + 3 9 + 3 2 9 2 + 3 3 9 3 + . . . ) ] = ( 1 9 ) + [ ( 2 3 9 2 ) ( 1 + 1 3 + 1 3 2 + 1 3 3 + . . . + 1 3 ) ] \begin{aligned} F&=\left ( \frac{1}{9} \right )+\left ( \frac{4\times2}{9^{2}} \right )+\left ( \frac{4\times3\times2}{9^{3}} \right )+\left ( \frac{4\times3\times3\times2}{9^{4}} \right )+\left ( \frac{4\times3\times3\times3\times2}{9^{5}} \right )+\;.\;.\;.\;\\ &=\left ( \frac{1}{9} \right )+\left ( \frac{2^{3}}{9^{2}} \right )+\left ( \frac{2^{3}\times3}{9^{3}} \right )+\left ( \frac{2^{3}\times3^{2}}{9^{4}} \right )+\left ( \frac{2^{3}\times3^{3}}{9^{5}} \right )+\;.\;.\;.\;\\ &=\left ( \frac{1}{9} \right )+\left [ \left ( \frac{2^{3}}{9^{2}} \right )\left ( 1+\frac{3}{9}+\frac{3^{2}}{9^{2}}+\frac{3^{3}}{9^{3}}+\;.\;.\;.\;\right ) \right ]\\ &=\left ( \frac{1}{9} \right )+\left [ \left ( \frac{2^{3}}{9^{2}} \right )\left ( 1+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\;.\;.\;.\;+\frac{1}{3^{\infty }}\right ) \right ]\\ \end{aligned} k = 0 ( 1 3 k ) = 3 2 \boxed{{\color{#D61F06}\sum_{k=0}^{\infty}\left ( \frac{1}{3^{k}} \right )=\frac{3}{2}}} the sum of reciprocals of powers of any n produce a convergent geometric series: \because\boxed{ \begin{array} {l l} \text{the sum of reciprocals of powers of any n produce a convergent geometric series: } \end{array} } F = ( 1 9 ) + [ ( 2 3 3 4 ) ( 3 2 ) ] = ( 1 9 ) + ( 2 2 3 3 ) = 1 9 + 4 27 = 7 / 27 F= \left ( \frac{1}{9} \right )+\left [ \left ( \frac{2^{3}}{3^{4}} \right )\left ( \frac{3}{2}\right ) \right ]=\left ( \frac{1}{9} \right )+\left (\frac{2^{2}}{3^{3}}\right)=\frac{1}{9}+\frac{4}{27}=7/27

µ τ Σ -µτΣ

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...