Fraction!

Calculus Level 3

lim n + 1 + 16 + 81 + + n 4 ( 1 + 4 + 9 + 16 + + n 2 ) ( n 7 ) ( n + 8 ) \large \lim \limits_{n \rightarrow +\infty} \dfrac{1+16+81+\cdots +n^4}{(1+4+9+16+\cdots+n^2)(n-7)(n+8)}

Given that the limit above can be expressed as a b \dfrac{a}{b} , where a a and b b are coprime positive integers, find a + 5 b a+5b .


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Sum of n, n², or n³

L = lim n 1 + 16 + 81 + + n 4 ( 1 + 4 + 9 + 16 + + n 2 ) ( n 7 ) ( n + 8 ) Use Faulhaber’s formula for k = 1 n k 4 (see reference) = lim n 1 30 n ( n + 1 ) ( 2 n + 1 ) ( 3 n 2 + 3 n 1 ) 1 6 n ( n + 1 ) ( 2 n + 1 ) ( n 7 ) ( n + 8 ) = lim n 3 n 2 + 3 n 1 5 ( n 7 ) ( n + 8 ) = lim n 3 n 2 + 3 n 1 5 ( n 2 + n 56 ) Divide up and down by n 2 = lim n 3 + 3 n 1 n 2 5 ( 1 + 1 n 56 n 2 ) = 3 5 \begin{aligned} L & = \lim_{n \to \infty} \frac {\color{#3D99F6}1+16+81+\cdots + n^4}{{\color{#D61F06}(1+4+9+16+\cdots + n^2)}(n-7)(n+8)} & \small \color{#3D99F6} \text{Use Faulhaber's formula for }\sum_{k=1}^n k^4 \text{ (see reference)} \\ & = \lim_{n \to \infty} \frac {\color{#3D99F6}\frac 1{30}n(n+1)(2n+1)(3n^2+3n-1)}{{\color{#D61F06}\frac 16n(n+1)(2n+1)}(n-7)(n+8)} \\ & = \lim_{n \to \infty} \frac {3n^2+3n-1}{5(n-7)(n+8)} \\ & = \lim_{n \to \infty} \frac {3n^2+3n-1}{5(n^2+n-56)} & \small \color{#3D99F6} \text{Divide up and down by } n^2 \\ & = \lim_{n \to \infty} \frac {3+\frac 3n-\frac 1{n^2}}{5\left(1+\frac 1n-\frac {56}{n^2}\right)} \\ & = \frac 35 \end{aligned}

a + 5 b = 3 + 5 ( 5 ) = 28 \implies a + 5b = 3 + 5(5) = \boxed{28}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...