Given that the limit above can be expressed as , where and are coprime positive integers, find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Sum of n, n², or n³
L = n → ∞ lim ( 1 + 4 + 9 + 1 6 + ⋯ + n 2 ) ( n − 7 ) ( n + 8 ) 1 + 1 6 + 8 1 + ⋯ + n 4 = n → ∞ lim 6 1 n ( n + 1 ) ( 2 n + 1 ) ( n − 7 ) ( n + 8 ) 3 0 1 n ( n + 1 ) ( 2 n + 1 ) ( 3 n 2 + 3 n − 1 ) = n → ∞ lim 5 ( n − 7 ) ( n + 8 ) 3 n 2 + 3 n − 1 = n → ∞ lim 5 ( n 2 + n − 5 6 ) 3 n 2 + 3 n − 1 = n → ∞ lim 5 ( 1 + n 1 − n 2 5 6 ) 3 + n 3 − n 2 1 = 5 3 Use Faulhaber’s formula for k = 1 ∑ n k 4 (see reference) Divide up and down by n 2
⟹ a + 5 b = 3 + 5 ( 5 ) = 2 8