Fraction

Algebra Level 3

It is given that x + 1 x = 4 x+\dfrac{1}{x}=4 and A x 2 x 4 + x 2 + 1 = 49 750 \dfrac{Ax^{2}}{x^{4}+x^{2}+1}=\dfrac{49}{750} .

If the value of A A can be expressed as m n \dfrac {m}{n} , where m m and n n are coprime positive integers, what is the value of m + n m+n ?


The answer is 99.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

A x 2 x 4 + x 2 + 1 = 49 750 Dividing LHS up and down by x 2 A x 2 + 1 + 1 x 2 = 49 750 A x 2 + 2 + 1 x 2 1 = 49 750 A ( x + 1 x ) 2 1 = 49 750 Note that x + 1 x = 4 A 16 1 = 49 750 A 15 = 49 750 A = 49 × 15 750 = 49 50 \begin{aligned} \frac {Ax^2}{x^4+x^2+1} & = \frac{49}{750} & \small \color{#3D99F6} \text{Dividing LHS up and down by }x^2 \\ \frac A {x^2+1+\dfrac 1{x^2}} & = \frac{49}{750} \\ \frac A {{\color{#3D99F6}x^2+2+\dfrac 1{x^2}}-1} & = \frac{49}{750} \\ \frac A {{\color{#3D99F6}\left(x+\dfrac 1x\right)^2}-1} & = \frac{49}{750} & \small \color{#3D99F6} \text{Note that }x+\frac 1x = 4 \\ \frac A {{\color{#3D99F6}16}-1 } & = \frac{49}{750} \\ \frac A {15} & = \frac{49}{750} \\ A & = \frac{49 \times 15}{750} \\ & = \frac {49}{50} \end{aligned}

m + n = 49 + 50 = 99 \implies m + n = 49+50 = \boxed{99}

x + 1 x = 4 x+\frac{1}{x}=4 Squaring both sides, x 2 + 1 x 2 = 14 x^2+\frac{1}{x^2}=14 x 4 + 1 = 14 x 2 x^4+1=14x^2 Therefore, A x 2 ( x 4 + 1 ) + x 2 = A x 2 14 x 2 + x 2 = A 15 \frac{Ax^2}{(x^4+1)+x^2} =\frac{Ax^2}{14x^2+x^2} =\frac{A}{15} So, A 15 = 49 750 \frac{A}{15}=\frac{49}{750} A = 49 50 A=\frac{49}{50} m + n = 99 \implies m+n=\boxed{99}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...