Which fraction is greater?

Algebra Level 2

A = 1 5 16 + 1 1 5 17 + 1 or B = 1 5 15 + 1 1 5 16 + 1 \large \color{#3D99F6}{\large{A=\frac{15^{16} +1}{15^{17} +1}} \quad {\color{#333333}{\text{or}}} \quad \color{#D61F06}{B=\frac{15^{15} +1}{15^{16} +1}}}

Which is larger?

They are equal B A

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Alan Yan
Sep 20, 2015

1 5 16 + 1 1 5 17 + 1 ? 1 5 15 + 1 1 5 16 + 1 \frac{15^{16} + 1}{15^{17} + 1} \boxed{?} \frac{15^{15}+1}{15^{16}+1} Cross Multiply! 1 5 32 + 2 1 5 16 + 1 ? 1 5 32 + 1 5 17 + 1 5 15 + 1 15^{32} + 2\cdot15^{16} + 1 \boxed{ ? } 15^{32} + 15^{17} + 15^{15} + 1 2 1 5 16 ? 1 5 17 + 1 5 15 2\cdot 15^{16} \boxed{ ? } 15^{17} + 15^{15} 2 15 ? 1 5 2 + 1 2 \cdot 15 \boxed{ ? } 15^2 + 1 30 < 226 30 \boxed{ < } 226

in 2nd step, why there is an exponent 32 on 15?

Ali Hassan - 5 years, 8 months ago

Log in to reply

I crossed multiplied. Specifically, 1 5 17 1 5 15 = 1 5 32 15^{17} \cdot 15^{15} = 15^{32} .

Alan Yan - 5 years, 7 months ago

I like the solution but how come the calculator says they are equal

Nehemiah Osei - 5 years, 8 months ago

Log in to reply

Because their difference is so small that the calculator cannot display unless the calculator can display at least 20 digits.

Spy Mabana - 5 years, 8 months ago

Log in to reply

Oh, Really?

Thanks.

Nehemiah Osei - 5 years, 8 months ago

..... either something is wrong with the calculator (unlikely) or you typed in the expression wrong (i.e. Wrong parenthesis placement.)

Alan Yan - 5 years, 8 months ago

Log in to reply

I actually cross-checked but anyway, thanks

Nehemiah Osei - 5 years, 8 months ago

wonderful thats is like my soultion

Patience Patience - 5 years, 1 month ago

but how can we apply all the arithmetic rule without knowing the symbol..

Saiful Saif - 5 years, 7 months ago
Chew-Seong Cheong
Sep 21, 2015

Let a = 1 5 15 a=15^{15} and consider the following:

1 5 15 + 1 1 5 16 + 1 1 5 16 + 1 1 5 17 + 1 = ( 1 5 15 + 1 ) ( 1 5 17 + 1 ) ( 1 5 16 + 1 ) 2 = ( a + 1 ) ( 225 a + 1 ) ( 15 a + 1 ) 2 = 225 a 2 + 226 a + 1 225 a 2 + 30 a + 1 > 1 \begin{aligned} \dfrac{\dfrac{15^{15}+1}{15^{16}+1}}{\dfrac{15^{16}+1}{15^{17}+1}} & = \frac{(15^{15}+1)(15^{17}+1)}{(15^{16}+1)^2} = \frac{(a+1)(225a+1)}{(15a+1)^2} = \frac{225a^2+226a+1}{225a^2+30a+1} > 1 \end{aligned}

1 5 16 + 1 1 5 17 + 1 < 1 5 15 + 1 1 5 16 + 1 \Rightarrow \frac{15^{16}+1}{15^{17}+1} \boxed{<} \frac{15^{15}+1}{15^{16}+1}

Woahhhh nice!

Pi Han Goh - 5 years, 8 months ago

Great solution, very elegant. Using ratios is a good idea for this one

Michael Fuller - 5 years, 8 months ago

this is ryt answer

Saiful Saif - 5 years, 7 months ago

Let A = 1 5 16 + 1 1 5 17 + 1 \displaystyle A=\frac{15^{16}+1}{15^{17}+1} , B = 1 5 15 + 1 1 5 16 + 1 \displaystyle B=\frac{15^{15}+1}{15^{16}+1}

Factor B:

B = 1 5 15 + 1 1 5 16 + 1 = 15 × ( 1 5 15 + 1 ) 15 × ( 1 5 16 + 1 ) = 1 5 16 + 15 1 5 17 + 15 = ( 1 5 16 + 1 ) + 14 ( 1 5 17 + 1 ) + 14 > A B=\frac{15^{15}+1}{15^{16}+1}=\frac{15\times(15^{15}+1) }{15\times(15^{16}+1)} =\frac{15^{16}+15}{15^{17}+15}=\frac{(15^{16}+1)+14}{(15^{17}+1)+14} >A

So 1 5 16 + 1 1 5 17 + 1 < 1 5 15 + 1 1 5 16 + 1 \displaystyle \frac{15^{16}+1}{15^{17}+1}\boxed{<}\frac{15^{15}+1}{15^{16}+1}

its quit good

Saiful Saif - 5 years, 7 months ago

Why is it so? ( 15 16 + 1 ) + 14 ( 15 17 + 1 ) + 14 > A \frac{({15}^{16}+1)+14}{({15}^{17}+1)+14}>A

Rohit Ner - 5 years, 8 months ago

Log in to reply

We learned it: A B < A + C B + C \frac{A}{B}<\frac{A+C}{B+C}

Only for A,B, C belongs to Natural numbers.

Adam Phúc Nguyễn - 5 years, 8 months ago

Log in to reply

It's true only when A/B is between 0 and 1.

HIMANSHU PRAJAPATI - 5 years, 8 months ago
Magne Myhren
Sep 24, 2015

We simplify A B A - B and look at the sign of the answer to determine which fraction is bigger: A B = 1 5 16 + 1 1 5 17 + 1 1 5 15 + 1 1 5 16 + 1 = ( 1 5 16 + 1 ) 2 ( 1 5 15 + 1 ) ( 1 5 17 + 1 ) ( 1 5 17 + 1 ) ( 1 5 16 + 1 ) A-B = \frac{15^{16}+1}{15^{17}+1} - \frac{15^{15}+1}{15^{16}+1} = \frac{(15^{16}+1)^2-(15^{15}+1)(15^{17}+1)}{(15^{17}+1)(15^{16}+1)} We simplify the numerator and get ( 1 5 16 + 1 ) 2 ( 1 5 15 + 1 ) ( 1 5 17 + 1 ) = 1 5 32 + 2 1 5 16 + 1 1 5 32 1 5 15 1 5 17 1 = 2 15 1 5 15 1 5 15 225 1 5 15 = ( 196 ) 1 5 15 (15^{16}+1)^2-(15^{15}+1)(15^{17}+1) \\ =15^{32}+2 \cdot 15^{16}+1-15^{32} -15^{15}-15^{17}-1 \\ = 2\cdot 15 \cdot 15^{15}-15^{15}-225 \cdot 15^{15} \\ = (-196) \cdot 15^{15} The numerator is negative, so B B must be greater than A A .

Nice write up. Different from others' solutions.

Jessee Hartsock - 5 years, 8 months ago
Ankur Jindal
Oct 19, 2015

Multiply both numerator and denominator of B by 15. Then use the concept a/b < a+x/b+x

Ayush Garg
Oct 21, 2015

\[ We note that the denominators are larger than the numerators, so we compare 1/A and 1/B

1/A = 15 - 14/(15^16. +1) and. 1/B = 15- 14/(15^15 +1) Therefore 1/A > 1/B A < B \]

Johannes Berger
Sep 24, 2015

Assume that B B is larger and write the ratio B A \frac{B}{A} as ( a a + 1 ) ( a a + 2 + 1 ) ( a a + 1 + 1 ) 2 \frac{(a^a + 1)(a^{a+2}+1)}{(a^{a+1} + 1)^2} where we set a = 15 a=15 . Multiplying it out and gathering like terms yields a 2 ( a + 1 ) + a a + a a + 2 + 1 a 2 ( a + 1 ) + 2 a a + 1 + 1 . \frac {a^{2(a+1)} + a^a + a^{a+2} +1} {a^{2(a+1)} + 2a^{a+1} + 1 }. To check whether B B really is larger, this has to be bigger than 1 1 , and since two terms in the numerator and the denominator are equal, it is sufficient to check that a a + a a + 2 a^a + a^{a+2} is larger than 2 a a + 1 2a^{a+1} . Again, with ratios, this becomes a a + a a + 2 2 a a + 1 = 1 + a 2 2 a > 1 iff a > 1. \frac {a^a + a^{a+2}} {2a^{a+1}}= \frac{1+a^2}{2a} > 1 \quad\text{iff}\quad a>1.

Hence, B B is larger than A A .

Woody Superman
Sep 24, 2015

We know : With X,Y,Z >0 : X/Y < (X+Z)/(Y+Z) . With 0 < Z1 < Z2, There is Z3 > 0 that Z1 + Z3 = Z2 . ==> (X+Z1)/(Y+Z1) < (X+Z2)/(Y+Z2) with Z1 < Z2 .

A = (1 + 1/15^16)/(15 + 1/15^16) . And B = (1 + 1/15^15)/(15 + 1/15^15) . So A < B.

Yusra Hamid
Sep 24, 2015

The larger fraction is the one whose denominator is small. So naturally B!

that is only when the numerator of both the fractions is same! Forth Grade Maths

Swarang Pundlik - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...