Let a = 2 0 1 4 2 0 1 4 , b = 2 0 1 5 2 0 1 5 , c = 2 0 1 6 2 0 1 6 . Find the value of 2 0 1 5 a − a + 2 0 1 5 a − b + 2 0 1 5 a − c 1 + 2 0 1 5 b − a + 2 0 1 5 b − b + 2 0 1 5 b − c 1 + 2 0 1 5 c − a + 2 0 1 5 c − b + 2 0 1 5 c − c 1
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Each denominator has a (different) common factor. Extracting these gives us the following expression: 2 0 1 5 − a + 2 0 1 5 − b + 2 0 1 5 − c 2 0 1 5 − a + 2 0 1 5 − a + 2 0 1 5 − b + 2 0 1 5 − c 2 0 1 5 − b + 2 0 1 5 − a + 2 0 1 5 − b + 2 0 1 5 − c 2 0 1 5 − c
Now each denominator is the same, so this is simply: 2 0 1 5 − a + 2 0 1 5 − b + 2 0 1 5 − c 2 0 1 5 − a + 2 0 1 5 − b + 2 0 1 5 − c = 1
Therefore, the answer is 1 , regardless of the values of a, b, or c.
2015^a = x
2015^b = y
2015^c = z
1/(1 + x/y + x/z) + 1/(1 + y/x + y/z) + 1/(1 + z/y + z/x) =
yz/(yz + xz + xy) + xz/(yz + xz + xy) + yx/(yz + xz + xy) =(yz + xz + xy)/(yz + xz + xy)
= 1
realy helpful sir
Problem Loading...
Note Loading...
Set Loading...
Let 2 0 1 5 a = x , 2 0 1 5 b = y and 2 0 1 5 c = z . Thus, ∑ 2 0 1 5 a − a + 2 0 1 5 a − b + 2 0 1 5 a − c 1 = ∑ 1 + y x + z x 1 = ∑ x y + y z + z x x y = x y + y z + z x x y + y z + z x = 1 Therefore the answer is 1 .
Here ∑ is the cyclic sum .