Fraction With Exponents!

Algebra Level 1

Let a = 201 4 2014 a=2014^{2014} , b = 201 5 2015 b=2015^{2015} , c = 201 6 2016 c=2016^{2016} . Find the value of 1 201 5 a a + 201 5 a b + 201 5 a c + 1 201 5 b a + 201 5 b b + 201 5 b c + 1 201 5 c a + 201 5 c b + 201 5 c c \frac{1}{2015^{a-a}+2015^{a-b}+2015^{a-c}} \\ +\frac{1}{2015^{b-a}+2015^{b-b}+2015^{b-c}} \\ +\frac{1}{2015^{c-a}+2015^{c-b}+2015^{c-c}}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hoo Zhi Yee
Jan 28, 2015

Let 201 5 a = x 2015^a=x , 201 5 b = y 2015^b=y and 201 5 c = z 2015^c=z . Thus, 1 201 5 a a + 201 5 a b + 201 5 a c = 1 1 + x y + x z = x y x y + y z + z x = x y + y z + z x x y + y z + z x = 1 \sum \frac{1}{2015^{a-a}+2015^{a-b}+2015^{a-c}}=\sum \frac{1}{1+\frac{x}{y}+\frac{x}{z}}=\sum \frac{xy}{xy+yz+zx}=\frac{xy+yz+zx}{xy+yz+zx}=1 Therefore the answer is 1 1 .

Here \sum is the cyclic sum .

Harry Ray
May 2, 2016

Each denominator has a (different) common factor. Extracting these gives us the following expression: 201 5 a 201 5 a + 201 5 b + 201 5 c + 201 5 b 201 5 a + 201 5 b + 201 5 c + 201 5 c 201 5 a + 201 5 b + 201 5 c \frac{2015^{-a}}{2015^{-a} + 2015^{-b} + 2015^{-c}} + \frac{2015^{-b}}{2015^{-a} + 2015^{-b} + 2015^{-c}} + \frac{2015^{-c}}{2015^{-a} + 2015^{-b} + 2015^{-c}}

Now each denominator is the same, so this is simply: 201 5 a + 201 5 b + 201 5 c 201 5 a + 201 5 b + 201 5 c = 1 \frac{2015^{-a} + 2015^{-b} + 2015^{-c}}{2015^{-a} + 2015^{-b} + 2015^{-c}} = 1

Therefore, the answer is 1 \boxed{1} , regardless of the values of a, b, or c.

Gamal Sultan
Jan 31, 2015

2015^a = x

2015^b = y

2015^c = z

1/(1 + x/y + x/z) + 1/(1 + y/x + y/z) + 1/(1 + z/y + z/x) =

yz/(yz + xz + xy) + xz/(yz + xz + xy) + yx/(yz + xz + xy) =(yz + xz + xy)/(yz + xz + xy)

= 1

realy helpful sir

gurdas banger - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...