Fraction with Ratio

Algebra Level 2

y x z = x + y z = x y \frac{y}{x - z} = \frac{x + y}{z} = \frac{x}{y}

If the equation above holds true for three distinct positive numbers x x , y y , and z z , what is the value of x y \dfrac{x}{y} ?

6 1 2 3 4 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mahdi Raza
May 7, 2020

Applying Addendo, the fraction should still be the same

\[\begin{align} \frac{y}{x-z} = \frac{x + y}{z} = \frac{x}{y} &= \color{Blue}{\frac{(y) + (x + y) + (x)}{(x-z) + (z) + (y)}} \\ \\ \frac{x}{y} &= \color{Blue}{\frac{2(x + y)}{x + y}} \\ \\ \frac{x}{y} &= \color{Blue}{\boxed{2}}

\end{align}\]

Wow that's a elegant solution

Isaac YIU Math Studio - 1 year, 1 month ago

Log in to reply

Thank you, glad you like it :)

Mahdi Raza - 1 year ago

{ y x z = x y y 2 = x 2 z x x 2 y 2 = z x . . . ( 1 ) x + y z = x y x y + y 2 = z x . . . ( 2 ) \begin{cases} \dfrac y{x-z} = \dfrac xy \implies y^2 = x^2 - zx & \implies x^2 - y^2 = zx & ...(1) \\ \dfrac {x+y}z = \dfrac xy & \implies xy + y^2 = zx & ...(2) \end{cases}

( 1 ) + ( 2 ) : x 2 + x y = 2 z x x + y = 2 z (1)+(2): \quad x^2+xy = 2zx \implies \blue{x+y = 2z} for x 0 x \ne 0 . From x y = x + y z = 2 z z = 2 \dfrac xy = \dfrac {x+y}z = \dfrac {2z}z = \boxed 2 .

Same way my fellow.

Étienne Munćan - 1 year ago

Log in to reply

No, upvote?

Chew-Seong Cheong - 1 year ago

Let y x z = x + y z = x y = k \dfrac{y}{x-z}=\dfrac{x+y}{z}=\dfrac{x}{y}=k .

Then x = k y , y = k x k z , x + y = k z y = k 2 y k y y k 2 k 2 = 0 k = 2 x=ky, y=kx-kz, x+y=kz\implies y=k^2y-ky-y\implies k^2-k-2=0\implies k=2 (since k k has to be positive).

Therefore x y = 2 \dfrac{x}{y}=\boxed 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...