x − z y = z x + y = y x
If the equation above holds true for three distinct positive numbers x , y , and z , what is the value of y x ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Wow that's a elegant solution
⎩ ⎪ ⎨ ⎪ ⎧ x − z y = y x ⟹ y 2 = x 2 − z x z x + y = y x ⟹ x 2 − y 2 = z x ⟹ x y + y 2 = z x . . . ( 1 ) . . . ( 2 )
( 1 ) + ( 2 ) : x 2 + x y = 2 z x ⟹ x + y = 2 z for x = 0 . From y x = z x + y = z 2 z = 2 .
Same way my fellow.
Let x − z y = z x + y = y x = k .
Then x = k y , y = k x − k z , x + y = k z ⟹ y = k 2 y − k y − y ⟹ k 2 − k − 2 = 0 ⟹ k = 2 (since k has to be positive).
Therefore y x = 2 .
Problem Loading...
Note Loading...
Set Loading...
Applying Addendo, the fraction should still be the same
\[\begin{align} \frac{y}{x-z} = \frac{x + y}{z} = \frac{x}{y} &= \color{Blue}{\frac{(y) + (x + y) + (x)}{(x-z) + (z) + (y)}} \\ \\ \frac{x}{y} &= \color{Blue}{\frac{2(x + y)}{x + y}} \\ \\ \frac{x}{y} &= \color{Blue}{\boxed{2}}
\end{align}\]