Fractional Diophantine Equation

Let a , b , c a, b, c be positive integers such that 1 a + 1 b + 1 c + 24 a b c = 1. \begin{aligned} \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{24}{abc}=1. \end{aligned} Find the sum of all possible values of a b c abc .


The answer is 595.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Without loss of generality, assume that a b c a\leq b\leq c . Thus, we have 1 a + 1 b + 1 c + 24 a b c = 1 3 a + 24 a 3 , \begin{aligned} \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{24}{abc}=1\leq \frac{3}{a}+\frac{24}{a^3}, \end{aligned} which gives a 3 3 a 2 24 0 a^3-3a^2-24\leq 0 . Thus, we have a 4 a\leq 4 and because a 1 a\neq 1 , we have a { 2 , 3 , 4 } a\in\{2, 3, 4\} . We then do the casework:

Case 1: If a = 2 a = 2 , then the given Diophantine equation becomes 1 b + 1 c + 12 b c = 1 2 b c = 2 b + 2 c + 24 , \begin{aligned} \frac{1}{b}+\frac{1}{c}+\frac{12}{bc}=\frac{1}{2}\implies bc = 2b+2c+24, \end{aligned} which, using Simon's Favorite Factoring Trick (SFFT), transforms to ( b 2 ) ( c 2 ) = 28 (b-2)(c-2)=28 . Since b c b\leq c means that b 2 c 2 b-2\leq c-2 , we deduce that ( b 2 , c 2 ) { ( 1 , 28 ) , ( 2 , 14 ) , ( 4 , 7 ) } (b-2, c-2)\in\{(1, 28), (2, 14), (4, 7)\} , so we have ( a , b , c ) { ( 2 , 3 , 30 ) , ( 2 , 4 , 16 ) , ( 2 , 6 , 9 ) } (a, b, c)\in\{(2, 3, 30), (2, 4, 16), (2, 6, 9)\} .

Case 2: If a = 3 a = 3 , then the given Diophantine equation becomes 1 b + 1 c + 8 b c = 2 3 2 b c = 3 b + 3 c + 24. \begin{aligned} \frac{1}{b}+\frac{1}{c}+\frac{8}{bc}=\frac{2}{3}\implies 2bc = 3b+3c+24. \end{aligned} By SFFT, we have ( 2 b 3 ) ( 2 c 3 ) = 57 (2b-3)(2c-3)=57 . Since b c b\leq c means that 2 b 3 2 c 3 2b-3\leq 2c-3 and b 3 2 b 3 3 b\geq 3\implies 2b-3\geq 3 , we deduce that ( 2 b 3 , 2 c 3 ) { ( 3 , 19 ) } (2b-3, 2c-3)\in\{(3, 19)\} , so we have ( a , b , c ) { ( 3 , 3 , 11 ) } (a, b, c)\in\{ (3, 3, 11)\} .

Case 3: If a = 4 a = 4 , then the given Diophantine equation becomes 1 b + 1 c + 6 b c = 3 4 3 b c = 4 b + 4 c + 24. \begin{aligned} \frac{1}{b}+\frac{1}{c}+\frac{6}{bc}=\frac{3}{4}\implies 3bc = 4b+4c+24. \end{aligned} By SFFT, we have ( 3 b 4 ) ( 3 c 4 ) = 88 (3b-4)(3c-4)=88 . Since b c b\leq c means that 3 b 4 3 c 4 3b-4\leq 3c-4 and b 4 3 b 4 8 b\geq 4\implies 3b-4\geq 8 , we deduce that ( 3 b 4 , 3 c 4 ) { ( 8 , 11 ) } (3b-4, 3c-4)\in\{(8, 11)\} , so we have ( a , b , c ) { ( 4 , 4 , 5 ) } (a, b, c)\in\{ (4, 4, 5)\} .

Therefore, the solutions of the given Diophantine equation are ( a , b , c ) { ( 2 , 3 , 30 ) , ( 2 , 4 , 16 ) , ( 2 , 6 , 9 ) , ( 3 , 3 , 11 ) , ( 4 , 4 , 5 ) } \begin{aligned} (a,b,c)\in\{(2,3,30), (2, 4,16), (2,6,9),(3,3,11),(4,4,5)\} \end{aligned} and the sum of all possible values of a b c abc is 180 + 128 + 108 + 99 + 80 = 595 . \begin{aligned} 180+128+108+99+80=\boxed{595}. \end{aligned}

same here :)

Thanh Viet - 6 years, 10 months ago
Scrub Lord
May 7, 2018

1 a + 1 b + 1 c + 24 a b c = 1 \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{24}{abc}=1

a b + a c + b c + 24 = a b c ab+ac+bc+24=abc

a + b + c + 23 = a b c a b a c b c + a + b + c 1 = ( a 1 ) ( b 1 ) ( c 1 ) a+b+c+23=abc-ab-ac-bc+a+b+c-1=(a-1)(b-1)(c-1)

A = ( a 1 ) , B = ( b 1 ) , C = ( c 1 ) , A B C A=(a-1),B=(b-1),C=(c-1), A\le B\le C

A + B + C + 26 = A B C . A+B+C+26=ABC. Casework:

A = 1 , B = 2 C = 29 ; A = 1 , B = 3 C = 15 ; A = 2 , B = 2 C = 10 A=1,B=2\implies C=29;A=1,B=3\implies C=15;A=2,B=2\implies C=10

( A C 1 ) ( B C 1 ) = C ( C + 26 ) + 1 (AC-1)(BC-1)=C(C+26)+1

C < 10 ; C = 8 A = 1 , B = 5 ; C = 4 A = B = 3 C\lt 10\ ; C=8\implies A=1,B=5;C=4\implies A=B=3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...