Fractional Equations #1

Algebra Level 4

Find the sum of all possible values of x x that satisfy the equation

1 x 2 + 11 x 8 + 1 x 2 + 2 x 8 + 1 x 2 13 x 8 = 0. \frac{1}{x^2+11x-8}+\frac{1}{x^2+2x-8}+\frac{1}{x^2-13x-8}=0.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

U Z
Oct 26, 2014

1 x ( 1 x 8 x + 11 ) + 1 x ( 1 x 8 x + 2 ) + 1 x ( 1 x 8 x 13 ) = 0 \frac{1}{x}(\frac{1}{ x - \frac{8}{x} + 11}) + \frac{1}{x}(\frac{1}{ x - \frac{8}{x} + 2}) + \frac{1}{x}(\frac{1}{ x - \frac{8}{x} - 13}) = 0

now 1 x \frac{1}{x} can't be zero

therefore solving the equation we get x = ( 8 , 1 ) o r ( 8 , 1 ) x = ( 8 , -1) or ( -8 , 1)

Yang Cheng
Oct 25, 2014

1 x 2 + 11 x 8 + 1 x 2 + 2 x 8 + 1 x 2 13 x 8 = 1 ( x 2 + 2 x 8 ) + 9 x + 1 x 2 + 2 x 8 + 1 ( x 2 2 x 8 ) 15 x = 1 ( x + 4 ) ( x 2 ) + 9 x + 1 ( x + 4 ) ( x 2 ) + 1 ( x + 4 ) ( x 2 ) 15 x \dfrac{1}{x^2+11x-8} + \dfrac{1}{x^2+2x-8} + \dfrac{1}{x^2-13x-8} \\ = \dfrac{1}{ (x^2+2x-8)+9x} + \dfrac{1}{x^2+2x-8} + \dfrac{1}{(x^2-2x-8)-15x} \\ = \dfrac{1}{(x+4)(x-2)+9x} + \dfrac{1}{(x+4)(x-2)} + \dfrac{1}{(x+4)(x-2)-15x}

Let t = ( x + 4 ) ( x 2 ) t= \boxed{(x+4)(x-2)} , the equation can be written as

1 t 9 x + 1 t + 1 t 15 x = 0 \dfrac{1}{t-9x} + \dfrac{1}{t} + \dfrac{1}{t-15x} = 0

Multilply the equation by t ( t 9 x ) ( t 15 x ) t(t-9x)(t-15x) , we get

t ( t 15 x ) + ( t + 9 x ) ( t 15 x ) + t ( t + 9 x ) = 0 3 t 2 12 x t 135 x 2 = 0 t 2 4 x t 45 x 2 = 0 ( t 9 x ) ( t + 5 x ) = 0 t = 9 x o r t = 5 x t(t-15x) + (t+9x)(t-15x) + t(t+9x) = 0 \\ \Rightarrow 3t^2-12xt-135x^2 = 0 \\ t^2 - 4xt -45x^2 = 0 \\ (t-9x)(t+5x) =0 \\ t = 9x \quad or \quad t=-5x

When t = 9 x t=9x ,

( x + 4 ) ( x 2 ) = 9 x ( x 8 ) ( x + 1 ) = 0 x = 8 , 1 (x+4)(x-2)=9x \Rightarrow (x-8)(x+1)=0 \Rightarrow x= \boxed {8, -1}

When t = 5 x t=-5x ,

( x + 4 ) ( x 2 ) = 5 x ( x + 8 ) ( x 1 ) = 0 x = 8 , 1 (x+4)(x-2) = -5x \Rightarrow (x+8)(x-1)=0 \Rightarrow x= \boxed {-8, 1}

\therefore , Sum = 8 + ( 1 ) + ( 8 ) + 1 = 0 = \boxed{8+(-1)+(-8)+1=0}

Ramiel To-ong
Jan 9, 2016

nice solution

Ramesh Goenka
Feb 7, 2015

using the coefficients to find the sum of zeroes of polynomial, we will get a four degree equation and we need to find out the coefficient of x^4 and x^3 to get the sum of roots, which are 3( 1+1+1) and 0 ( -13 2 + 2 2 + 11*2) respectively .. ! we have our answer i.e. 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...