Find the sum of all possible values of x that satisfy the equation
x 2 + 1 1 x − 8 1 + x 2 + 2 x − 8 1 + x 2 − 1 3 x − 8 1 = 0 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
x 2 + 1 1 x − 8 1 + x 2 + 2 x − 8 1 + x 2 − 1 3 x − 8 1 = ( x 2 + 2 x − 8 ) + 9 x 1 + x 2 + 2 x − 8 1 + ( x 2 − 2 x − 8 ) − 1 5 x 1 = ( x + 4 ) ( x − 2 ) + 9 x 1 + ( x + 4 ) ( x − 2 ) 1 + ( x + 4 ) ( x − 2 ) − 1 5 x 1
Let t = ( x + 4 ) ( x − 2 ) , the equation can be written as
t − 9 x 1 + t 1 + t − 1 5 x 1 = 0
Multilply the equation by t ( t − 9 x ) ( t − 1 5 x ) , we get
t ( t − 1 5 x ) + ( t + 9 x ) ( t − 1 5 x ) + t ( t + 9 x ) = 0 ⇒ 3 t 2 − 1 2 x t − 1 3 5 x 2 = 0 t 2 − 4 x t − 4 5 x 2 = 0 ( t − 9 x ) ( t + 5 x ) = 0 t = 9 x o r t = − 5 x
When t = 9 x ,
( x + 4 ) ( x − 2 ) = 9 x ⇒ ( x − 8 ) ( x + 1 ) = 0 ⇒ x = 8 , − 1
When t = − 5 x ,
( x + 4 ) ( x − 2 ) = − 5 x ⇒ ( x + 8 ) ( x − 1 ) = 0 ⇒ x = − 8 , 1
∴ , Sum = 8 + ( − 1 ) + ( − 8 ) + 1 = 0
using the coefficients to find the sum of zeroes of polynomial, we will get a four degree equation and we need to find out the coefficient of x^4 and x^3 to get the sum of roots, which are 3( 1+1+1) and 0 ( -13 2 + 2 2 + 11*2) respectively .. ! we have our answer i.e. 0 .
Problem Loading...
Note Loading...
Set Loading...
x 1 ( x − x 8 + 1 1 1 ) + x 1 ( x − x 8 + 2 1 ) + x 1 ( x − x 8 − 1 3 1 ) = 0
now x 1 can't be zero
therefore solving the equation we get x = ( 8 , − 1 ) o r ( − 8 , 1 )