Given that the value of x that satisfies the equation
x + 2 x + 1 + x + 9 x + 8 = x + 3 x + 2 + x + 8 x + 7
can be expressed in the form − n m , where m and n are coprime, positive integers, find the value of m + n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Exactly the same!!!
x + 2 x + 2 − 1 + x + 9 x + 9 − 1 = x + 3 x + 3 − 1 + x + 8 x + 8 − 1
2 − ( x + 2 1 + x + 9 1 ) = 2 − ( x + 3 1 + x + 8 1 )
( x + 2 ) ( x + 9 ) 2 x + 1 1 = ( x + 3 ) ( x + 8 ) 2 x + 1 1
therefore
( 2 x + 1 1 ) ( ( x + 2 ) ( x + 9 ) 1 − ( x + 3 ) ( x + 8 ) 1 = 0
hence x = 2 − 1 1 o r x 2 + 1 1 x + 2 4 − x 2 + 1 1 x + 1 8 = 0
therefore x = 2 − 1 1
Just 2 minutes faster!
Problem Loading...
Note Loading...
Set Loading...
x + 2 ( x + 2 ) − 1 + x + 9 ( x + 9 ) − 1 = x + 3 ( x + 3 ) − 1 + x + 8 ( x + 8 ) − 1
2 − x + 2 1 − x + 9 1 = 2 − x + 3 1 − x + 8 1
x + 8 1 − x + 9 1 = x + 2 1 − x + 3 1
( x + 8 ) ( x + 9 ) 1 = ( x + 2 ) ( x + 3 ) 1
x 2 + 5 x + 6 = x 2 + 1 7 x + 7 2
1 2 x + 6 6 = 0
x = 2 − 1 1