Fractional Equations #4

Algebra Level 4

Given that the value of x x that satisfies the equation

x + 1 x + 2 + x + 8 x + 9 = x + 2 x + 3 + x + 7 x + 8 \dfrac{x+1}{x+2}+\dfrac{x+8}{x+9}=\dfrac{x+2}{x+3}+\dfrac{x+7}{x+8}

can be expressed in the form m n -\dfrac{m}{n} , where m m and n n are coprime, positive integers, find the value of m + n m+n .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kartik Sharma
Oct 26, 2014

( x + 2 ) 1 x + 2 + ( x + 9 ) 1 x + 9 = ( x + 3 ) 1 x + 3 + ( x + 8 ) 1 x + 8 \frac{(x+2) -1}{x+2} + \frac{(x+9)-1}{x+9} = \frac{(x+3)-1}{x+3} + \frac{(x+8)-1}{x+8}

2 1 x + 2 1 x + 9 = 2 1 x + 3 1 x + 8 2 - \frac{1}{x+2} - \frac{1}{x+9} = 2 - \frac{1}{x+3} - \frac{1}{x+8}

1 x + 8 1 x + 9 = 1 x + 2 1 x + 3 \frac{1}{x+8} - \frac{1}{x+9} = \frac{1}{x+2} -\frac{1}{x+3}

1 ( x + 8 ) ( x + 9 ) = 1 ( x + 2 ) ( x + 3 ) \frac{1}{(x+8)(x+9)} = \frac{1}{(x+2)(x+3)}

x 2 + 5 x + 6 = x 2 + 17 x + 72 {x}^{2} + 5x + 6 = {x}^{2} + 17x + 72

12 x + 66 = 0 12x + 66 = 0

x = 11 2 x = \frac{-11}{2}

Exactly the same!!!

Anik Mandal - 6 years, 7 months ago
U Z
Oct 26, 2014

x + 2 1 x + 2 + x + 9 1 x + 9 = x + 3 1 x + 3 + x + 8 1 x + 8 \frac{ x + 2 -1}{x +2} + \frac{ x + 9 -1}{x + 9} = \frac{ x + 3 -1}{x + 3} + \frac{ x + 8 -1}{x + 8}

2 ( 1 x + 2 + 1 x + 9 ) = 2 ( 1 x + 3 + 1 x + 8 ) 2 - ( \frac{1}{x +2} + \frac{1}{x + 9}) = 2 - ( \frac{1}{x +3} + \frac{1}{x +8})

2 x + 11 ( x + 2 ) ( x + 9 ) = 2 x + 11 ( x + 3 ) ( x + 8 ) \frac{ 2x + 11}{(x + 2)(x + 9)} = \frac{ 2x + 11}{(x + 3)(x + 8)}

therefore

( 2 x + 11 ) ( 1 ( x + 2 ) ( x + 9 ) 1 ( x + 3 ) ( x + 8 ) = 0 (2x + 11)( \frac{1}{(x + 2)(x + 9)} - \frac{1}{(x + 3)(x + 8)} = 0

hence x = 11 2 o r x 2 + 11 x + 24 x 2 + 11 x + 18 = 0 x = \frac{ -11}{2} or x^{2} + 11x + 24 - x^{2} + 11x + 18 =0

therefore x = 11 2 x = \frac{ -11}{2}

Just 2 minutes faster!

Kartik Sharma - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...