Fractional Equations A

Algebra Level 4

{ x 1 + 1 x 2 = 4 x 2 + 1 x 3 = 1 x 3 + 1 x 4 = 4 x 4 + 1 x 5 = 1 x 99 + 1 x 100 = 4 x 100 + 1 x 1 = 1 \begin{cases} x_1 + \dfrac1{x_2} = 4 \\ x_2 + \dfrac1{x_3} =1 \\ x_3 + \dfrac1{x_4} = 4 \\ x_4 + \dfrac1{x_5} = 1 \\ \vdots \\ x_{99} + \dfrac1{x_{100}} = 4 \\ x_{100} + \dfrac1{x_1} = 1 \end{cases}

Find all positive solutions of the system of fractional equations above.

Submit your answer as x 1 + x 2 + + x 100 x_1 + x_2 + \cdots + x_{100} .


The answer is 125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Matt O
Jan 6, 2016

This represents a continued fraction of period 2.

x 1 + 1 x 2 = 4 x 1 = 4 1 x 2 x 2 + 1 x 3 = 1 x 2 = 1 1 x 3 x 3 + 1 x 4 = 4 x 3 = 4 1 x 4 x 4 + 1 x 5 = 1 x 4 = 1 1 x 5 x 1 + 1 1 1 4 x 1 = 4 x 1 = 2 x_1 + \frac{1}{x_2} = 4 \Rightarrow x_1 = 4 - \frac{1}{x_2} \\ x_2 + \frac{1}{x_3} = 1 \Rightarrow x_2 = 1 - \frac{1}{x_3} \\ x_3 + \frac{1}{x_4} = 4 \Rightarrow x_3 = 4 - \frac{1}{x_4} \\ x_4 + \frac{1}{x_5} = 1 \Rightarrow x_4 = 1 - \frac{1}{x_5} \\ x_1 + \frac{1}{1 - \frac{1}{4 - x_1}} = 4 \Rightarrow x_1 = 2

Substituting x 1 = 2 x_1 = 2 into the first equation gives x 2 = 1 2 x_2 = \frac{1}{2} and by periodicity x 2 k + 1 = 2 , x 2 k = 1 2 x_{2k+1} = 2, x_{2k} = \frac{1}{2} for k ϵ N k \epsilon N

Therefore x 1 + x 2 + x 3 + x 4 + . . . + x 100 = ( 2 + 1 2 ) 50 = 125 x_1 + x_2 + x_3 + x_4 + ... + x_{100} = (2 + \frac{1}{2})50 = \boxed{125}

Samarth Agarwal
Jan 5, 2016

By A.M.-G.M. x 1 4 x 2 x_1 \leq 4x_2 , x 2 x 3 x_2 \leq x_3 , x 3 4 x 4 x_3 \leq 4x_4 , \cdots , x 100 x 1 x_{100} \leq x_1

\therefore x 1 = x 3 = x 5 = = x 99 = x 1 x_1=x_3=x_5=\cdots=x_{99} = x_1 and x 2 = x 4 = x 6 = = x 100 = x 1 4 x_2=x_4=x_6=\cdots=x_{100} = \frac{x_1}{4}

x 1 + 4 x 1 = 4 x 1 = 2 x_1 +\frac{4}{x_1} =4 \implies x_1=2

x 1 + x 2 + + x 100 = 250 x 1 4 = 125. \therefore x_1+x_2+\cdots + x_{100} = \frac{250x_1}{4} =125.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...