Fractional Integral - 2

Calculus Level 5

0 1 0 1 { x 3 y } d x d y = A B γ C \large \int_0^1 \int_0^1 \left \{ \dfrac {x^3}y \right \} \, dx \: dy = \dfrac AB - \dfrac \gamma C

If the equation above holds true for positive integers A A , B B and C C , with A A , B B coprime, find A + B + C A+B+C .

Notations :


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider , I = 0 1 0 1 { x k y } d x d y \displaystyle I=\int_0^1 \int_0^1 \left \{\dfrac{x^k}{y}\right \} \; dx\;dy

Set t = x k y \displaystyle t=\dfrac{x^k}{y}

I = 0 1 x k I I ( x k { t } t 2 d t ) I d x \displaystyle I = \int_0^1 \overbrace{x^k}^{II} \underbrace{\left(\int_{x^k}^\infty \dfrac{\left \{t\right \}}{t^2}\; dt\right)}_{I}\; dx

So by IBP we have,

I = 1 k + 1 1 { t } t 2 d t + k k + 1 0 1 x k d x \displaystyle I =\dfrac{1}{k+1}\int_1^\infty \dfrac{\left \{t\right \}}{t^2}\; dt + \dfrac{k}{k+1}\int_0^1 x^k\; dx

The first integral is equal to 1 γ 1-\gamma by definition , which makes

I = 2 k + 1 ( k + 1 ) 2 γ k + 1 \displaystyle I = \dfrac{2k+1}{(k+1)^2}-\dfrac{\gamma}{k+1}

For k = 3 k=3 we have,

I = 0 1 0 1 { x 3 y } d x d y = 7 16 γ 4 \displaystyle I=\int_0^1 \int_0^1 \left \{\dfrac{x^3}{y}\right \} \; dx\;dy = \dfrac{7}{16}-\dfrac{\gamma}{4} making A + B + C = 27 A+B+C=\boxed{27}

Note for above solution:-

S = Integral(0 to 1) frac part {1/x}dx Let x = 1/t

= integral(1 to infinity ) frac part {t}dt/t^2 = sum(k=1 to infinity) integral(k to k+1) (t-k)dt/t^2 = sum(k=1 to infinity) [ ln((k+1)/k) - 1/(k+1) ]

(OR)

  S = 1 - eulergamma

                          (Q.E.D)

Shivam Sharma - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...