Fractional part fun

Calculus Level 4

1 { x } x 3 d x = a π b c \int_1^{\infty}\frac{\{x\}}{x^3}\, dx=a-\frac{\pi^b}{c}

The above integral is true for positive integers a , b , a, b, and c c .

What is the value of a + b + c ? a+b+c?

Note: { x } \{x\} denotes the fractional part of x x .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sudeep Salgia
Jul 5, 2015

1 { x } x 3 d x = n = 1 n n + 1 { x } x 3 d x = n = 1 n n + 1 x x x 3 d x = n = 1 n n + 1 1 x 2 n x 3 d x = n = 1 [ 1 x + n 2 x 2 ] n n + 1 = n = 1 1 2 n 1 n + 1 + n 2 ( n + 1 ) 2 = n = 1 1 2 ( 1 n 1 n + 1 1 ( n + 1 ) 2 ) = 1 2 ( 1 ( ζ ( 2 ) 1 ) ) \displaystyle \begin{array}{c}\\ \int_1^{\infty} \frac{ \{ x \} }{x^3} \text{ d}x && = \sum_{n=1}^{\infty} \int_n^{n+1} \frac{ \{ x \} }{x^3} \text{ d}x \\ && = \sum_{n=1}^{\infty} \int_n^{n+1} \frac{ x- \lfloor x \rfloor }{x^3} \text{ d}x \\ && = \sum_{n=1}^{\infty} \int_n^{n+1} \frac{1}{x^2} - \frac{n}{x^3} \text{ d}x \\ && = \sum_{n=1}^{\infty} \left[ \frac{-1}{x} + \frac{n}{2x^2} \right]_n^{n+1} \\ && = \sum_{n=1}^{\infty} \frac{1}{2n} - \frac{1}{n+1} + \frac{n}{2(n+1)^2} \\ && = \sum_{n=1}^{\infty} \frac{1}{2} \left( \frac{1}{n} - \frac{1}{n+1} - \frac{1}{(n+1)^2} \right) \\ && = \frac{1}{2} \left( 1 - \left( \zeta (2) - 1 \right) \right) \\ \end{array}

( Using the fact that n = 1 ( 1 n 1 n + 1 ) = 1 \displaystyle \sum_{n=1}^{\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right) = 1 )

1 { x } x 3 d x = 1 1 2 ζ ( 2 ) = 1 π 2 12 \displaystyle \therefore \int_1^{\infty} \frac{ \{ x \} }{x^3} \text{ d}x = 1 - \frac{1}{2} \zeta (2) = 1 - \frac{\pi^2}{12} .

On comparing the coefficients ans summing them up, we get the answer as 15 \boxed{15} .

how is [x] = n ?

A Former Brilliant Member - 4 years, 9 months ago
Kazem Sepehrinia
Jul 5, 2015

I = 1 { x } x 3 d x = n = 1 ( n n + 1 x x x 3 d x ) = n = 1 ( n n + 1 x n x 3 d x ) = n = 1 ( 1 x + n 2 x 2 ) n n + 1 = n = 1 ( 1 2 n 1 2 ( n + 1 ) 1 2 ( n + 1 ) 2 ) = 1 2 1 2 ( π 2 6 1 ) = 1 π 2 12 \begin{array}{c}\text{I} &=\int_1^{\infty}\frac{\{x\}}{x^3} \text{d}x \\ &= \sum_{n=1}^{\infty} \left( \int_{n}^{n+1}\frac{x-\left \lfloor x \right \rfloor}{x^3} \text{d}x \right) \\ &=\sum_{n=1}^{\infty} \left( \int_{n}^{n+1}\frac{x-n}{x^3} \text{d}x \right) \\ &=\sum_{n=1}^{\infty} \left( -\frac{1}{x}+\frac{n}{2x^2} \right)_{n}^{n+1} \\ &=\sum_{n=1}^{\infty} \left( \frac{1}{2n}- \frac{1}{2(n+1)}-\frac{1}{2(n+1)^2} \right) \\ &=\frac{1}{2}-\frac{1}{2} \left(\frac{\pi^2}{6}-1 \right)\\ &=1-\frac{\pi^2}{12} \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...