Listing out all the integers

Calculus Level 4

1 { x } x 3 d x \large \int_1^\infty \frac { \{ x\} } {x^3} \, dx

If the integral is equal to 1 π 2 A 1- \dfrac{\pi^2}{A } , find the value of A A .

Clarification

{ x } \{ x\} denotes the the fractional part of x x . For instance, { 2 } = 0 , { 3.4 } = 0.4 , { π } = π 3 \{2\} = 0, \{3.4\} = 0.4, \{\pi\} = \pi - 3 .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

I = 1 { x } x 3 d x I = \displaystyle \int_{1}^{\infty} \frac{ \{x\}}{x^3} \ dx

I = 1 x x x 3 d x I = \displaystyle \int_{1}^{\infty} \frac{x - \lfloor x \rfloor}{x^3} \ dx

Here, I am going to split this into two integrals , I 1 I_{1} & I 2 I_{2} for the sake of convenience.

I 1 = 1 1 x 3 d x I_{1} = \displaystyle \int_{1}^{\infty} \frac{1}{x^3} \ dx

I 1 = lim t 1 x 2 t 1 = 1 lim t 1 t = 1 I_{1} =\displaystyle \lim_{t\rightarrow \infty } \left. \frac{1}{x^2} \right |_{t}^{1} = 1 - \lim_{t\rightarrow \infty} \frac{1}{t}= 1

Moving on to I 2 I_{2}

I 2 = 1 x x 3 d x = 1 2 1 x 3 d x + 2 3 2 x 3 d x + 3 4 3 x 3 d x + I_{2} = \displaystyle \int_{1}^{\infty} \dfrac{\lfloor x \rfloor}{x^3} \ dx = \displaystyle \int_{1}^{2}\frac{1}{x^3} \ dx + \int_{2}^{3}\frac{2}{x^3} \ dx + \int_{3}^{4}\frac{3}{x^3} \ dx + \ldots

I 2 = 1 2 × [ 1 x 2 2 1 + 2 x 2 3 2 + 3 x 2 4 3 + ] I_{2} = \displaystyle \frac{1}{2} \times [ \left. \dfrac{1}{x^2}\right| _{2}^{1} + \left. \dfrac{2}{x^2} \right| _{3}^{2} +\left. \dfrac{3}{x^2}\right | _{4}^{3} + \ldots ]

I 2 = 1 2 × [ 1 1 4 + 2 4 2 9 + 3 9 3 16 + ] I_{2} =\displaystyle \frac{1}{2} \times [ \displaystyle 1 - \frac{1}{4} + \frac{2}{4} -\frac{2}{9} + \frac{3}{9} - \frac{3}{16} + \ldots ]

I 2 = 1 2 × [ 1 + 1 4 + 1 9 + 1 16 ] I_{2} = \displaystyle \frac{1}{2} \times [ \displaystyle 1 + \frac{1}{4} +\frac{1}{9}+ \frac{1}{16} \ldots ]

I 2 = 1 2 × ζ ( 2 ) = 1 2 × π 2 6 = π 2 12 I_{2} = \displaystyle \frac{1}{2} \times \zeta (2) = \frac{1}{2} \times \frac{\pi^2}{6} = \frac{\pi^2}{12}

I = I 1 I 2 = 1 π 2 12 I = I_{1} - I_{2} = 1 - \displaystyle \frac{\pi^2}{12}

Comparing, A = 12 A = 12 .

Note that it is poor form (?) to say that 1 x 1 = 1 1 \left. \dfrac{1}{x} \right|_1^\infty = 1 - \dfrac{1}{\infty} as it should be noted that an improper integral implicitly takes a limit/limits, and also that 1 \dfrac{1}{\infty} is not defined. More correctly, we have 1 x 1 = lim x 1 x 1 x = lim x 1 1 x = 1 \displaystyle \left. \frac{1}{x} \right|_1^\infty = \lim_{x \to \infty} \left. \frac{1}{x} \right|_1^x = \lim_{x \to \infty} 1 - \frac{1}{x} = 1 .

Sorry to be so anal about this, but I personally feel that it's important to clear this misconception (and any other up, no matter how minor).

Also, you're missing a few d x dx 's. I've edited them in.

Jake Lai - 5 years, 6 months ago

Log in to reply

Ah, sorry, I was new at solution writing back then! Thanks for editing the dx's and pointing out my mistakes, edited them.

A Former Brilliant Member - 5 years, 5 months ago

I think the first integral's integrand should be 1/x^2 and not 1/x^3. If you have 1/x^3 you aren't going to get correct answer (1).

Henri Kärpijoki - 1 year, 2 months ago
Arjen Vreugdenhil
Nov 17, 2015

Consider the two integrals S 1 = x = 1 x x 3 d x and S 2 = x = 1 { x } x 3 d x . S_1 = \int_{x=1}^\infty \frac{x}{x^3}\:dx\ \ \ \ \ \text{and}\ \ \ \ \ S_2 = \int_{x=1}^\infty \frac{\{x\}}{x^3}\:dx. The difference between the integrands is 1 / x 3 1/x^3 for 1 x < 2 1 \leq x < 2 , 2 / x 3 2/x^3 for 2 x < 3 2 \leq x < 3 , and so on. We therefore write S 1 S 2 = 1 1 x 3 d x + 2 1 x 3 d x + . S_1 - S_2 = \int_1^\infty \frac{1}{x^3}\:dx + \int_2^\infty \frac{1}{x^3}\:dx + \cdots. In general, n 1 x 3 = 1 2 x 2 n = 1 2 n 2 . \int_n^\infty \frac{1}{x^3} = \left.-\frac{1}{2x^2}\right|_n^\infty = \frac{1}{2n^2}. Thus S 1 S 2 = 1 2 1 2 + 1 2 2 2 + 1 2 3 2 + = 1 2 n = 1 1 n 2 . S_1 - S_2 = \frac{1}{2\cdot 1^2} + \frac{1}{2\cdot 2^2} + \frac{1}{2\cdot 3^2} + \cdots = \tfrac12\sum_{n=1}^\infty \frac{1}{n^2}. The sum is well-known to be equal to π 2 / 6 \pi^2/6 . Thus S 1 S 2 = π 2 12 . S_1 - S_2 = \frac{\pi^2}{12}. Integral S 1 S_1 is easily evaluates (it is equal to 1), so S 2 = 1 π 2 12 . S_2 = 1 - \frac{\pi^2}{12}. Thus the solution is 12 \boxed{12} .

Tom Van Lier
Nov 18, 2015

The integral is equal to :

1 2 x 1 x 3 d x + 2 3 x 2 x 3 d x + 3 4 x 3 x 3 d x . + . . . = i = 1 i i + 1 x i x 3 d x = I . \int_1^2 \! \dfrac{x-1}{x^3} \, \mathrm{d}x + \int_2^3 \! \dfrac{x-2}{x^3} \, \mathrm{d}x + \int_3^4 \! \dfrac{x-3}{x^3} \, \mathrm{d}x. + ... = \sum_{i = 1}^{\infty} \int_i^{i+1} \! \dfrac{x-i}{x^3} \mathrm{d}x = I.

We get

I = i = 1 [ ( 1 x ) i i + 1 ( i 2 x 2 ) i i + 1 ] I =\displaystyle \sum_{i = 1}^{\infty} \left[ \left(\dfrac{-1}{x} \right)_{i}^{i+1} - \left(\dfrac{-i}{2x^2} \right)_{i}^{i+1}\right]

= i = 1 [ 1 i + 1 + 1 i + i 2 ( i + 1 ) 2 1 2 i ] = \displaystyle \sum_{i = 1}^{\infty} \left[\dfrac{-1}{i+1} + \dfrac{1}{i} +\dfrac{i}{2(i+1)^2} - \dfrac{1}{2i}\right]

= i = 1 [ 2 i 2 ( i + 1 ) 2 + 1 2 i ] = \displaystyle \sum_{i = 1}^{\infty} \left[\dfrac{-2 - i}{2(i+1)^2} + \dfrac{1}{2i} \right]

= i = 1 [ 2 i 2 ( i + 1 ) 2 ] + i = 1 1 2 i = \displaystyle \sum_{i = 1}^{\infty} \left[\dfrac{-2 - i}{2(i+1)^2}\right] + \displaystyle \sum_{i = 1}^{\infty}\dfrac{1}{2i}

= i = 1 [ 2 i 2 ( i + 1 ) 2 ] + i = 1 1 2 ( i + 1 ) + 1 2 = \displaystyle \sum_{i = 1}^{\infty} \left[\dfrac{-2 - i}{2(i+1)^2}\right] + \displaystyle \sum_{i = 1}^{\infty}\dfrac{1}{2(i+1)} + \dfrac{1}{2}

= i = 1 [ 2 i 2 ( i + 1 ) 2 + 1 2 ( i + 1 ) ] + 1 2 = \displaystyle \sum_{i = 1}^{\infty} \left[\dfrac{-2 - i}{2(i+1)^2} + \dfrac{1}{2(i+1)} \right] + \dfrac{1}{2}

= 1 2 i = 1 [ 1 2 ( i + 1 ) 2 ] = \dfrac{1}{2} - \displaystyle \sum_{i = 1}^{\infty} \left[\dfrac{1}{2(i+1)^2} \right]

= 1 2 1 2 ( ζ ( 2 ) 1 ) = \dfrac{1}{2} - \dfrac{1}{2} ( \zeta(2) - 1)

= 1 π 2 12 . = 1 - \dfrac{\pi^2}{12} .

Thus A = 12.

I also did the same..

Akhil Bansal - 5 years, 6 months ago

I = 1 { x } x 3 d x = k = 1 k k + 1 x k x 3 d x = k = 1 k k + 1 ( 1 x 2 k x 3 ) d x = k = 1 [ 1 x + k 2 x 2 ] k k + 1 = k = 1 ( 1 k + 1 + k 2 ( k + 1 ) 2 + 1 k k 2 k 2 ) = k = 1 1 2 k ( k + 1 ) 2 By partial fractions = k = 1 1 2 ( 1 k 1 k + 1 1 ( k + 1 ) 2 ) = 1 2 ( 1 ζ ( 2 ) + 1 ) = 1 π 2 12 \begin{aligned} I & = \int_1^\infty \frac{\{x\}}{x^3} \, dx \\ & = \sum_{k=1}^\infty \int_k^{k+1} \frac{x-k}{x^3} \, dx \\ & = \sum_{k=1}^\infty \int_k^{k+1} \left( \frac{1}{x^2} - \frac{k}{x^3} \right) \, dx \\ & = \sum_{k=1}^\infty \left[ -\frac{1}{x} + \frac{k}{2x^2} \right]_k^{k+1} \\ & = \sum_{k=1}^\infty \left(-\frac{1}{k+1} + \frac{k}{2(k+1)^2} + \frac{1}{k} - \frac{k}{2k^2} \right) \\ & = \sum_{k=1}^\infty \color{#3D99F6}{\frac{1}{2k(k+1)^2} \quad \quad \small \text{By partial fractions}} \\ & = \sum_{k=1}^\infty \color{#3D99F6}{\frac{1}{2}\left(\frac{1}{k} - \frac{1}{k+1} - \frac{1}{(k+1)^2}\right)} \\ & = \frac{1}{2} \left(1 - \zeta(2) + 1\right) \\ & = 1 - \frac{\pi^2}{12} \end{aligned}

A = 12 \implies A = \boxed{12}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...