Fractional part integral

Calculus Level 5

For n N n\in\mathbb{N} , what is

0 n { x 2 } d x + 2 3 n 3 = ? \large \int_0^n \{x^2\}\ dx +\frac{2}{3}{n^3}= ?

n 3 3 \sqrt{\frac{n^3}{3}} n 3 3 \frac{n^3}{3} The integral does not converge k = 1 n k 3 \sum_{k=1}^{n} \sqrt{k^3} k = 1 n k \sum_{k=1}^{n} \sqrt{k} k = 1 n 2 k \sum_{k=1}^{n^2} \sqrt{k}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Mar 13, 2018

0 n { x 2 } d x = j = 1 n 2 j 1 j { x 2 } d x = j = 1 n 2 j 1 j { u } 2 u 1 2 d u = j = 1 n 2 0 1 y 2 ( j 1 + y ) 1 2 d y = 1 2 j = 1 n 2 [ 2 3 ( j 1 + y ) 3 2 2 ( j 1 ) ( j 1 + y ) 1 2 ] 0 1 = 1 2 j = 1 n 2 [ 2 3 ( j 3 2 ( j 1 ) 3 2 ) 2 ( j 1 ) ( j 1 2 ( j 1 ) 1 2 ) ] = 1 2 j = 1 n 2 [ 2 3 ( j 3 2 ( j 1 ) 3 2 ) + 2 j 1 2 2 ( j 3 2 ( j 1 ) 3 2 ) ] = j = 1 n 2 j 1 2 2 3 j = 1 n 2 ( j 3 2 ( j 1 ) 3 2 ) = j = 1 n 2 j 1 2 2 3 n 3 \begin{aligned} \int_0^n \{x^2\}\,dx & = \; \sum_{j=1}^{n^2}\int_{\sqrt{j-1}}^{\sqrt{j}} \{x^2\}\,dx \; = \; \sum_{j=1}^{n^2}\int_{j-1}^j \frac{\{u\}}{2u^{\frac12}}\,du \; = \; \sum_{j=1}^{n^2} \int_0^1 \frac{y}{2(j-1+y)^{\frac12}}\,dy \\ & = \; \tfrac12\sum_{j=1}^{n^2}\left[ \tfrac23(j-1+y)^{\frac32} - 2(j-1)(j-1+y)^{\frac12}\right]_0^1 \; = \; \tfrac12\sum_{j=1}^{n^2} \Big[\tfrac23\big(j^{\frac32} - (j-1)^{\frac32}\big) - 2(j-1)\big(j^{\frac12} - (j-1)^{\frac12}\big) \Big] \\ & = \; \tfrac12\sum_{j=1}^{n^2} \Big[\tfrac23\big(j^{\frac32} - (j-1)^{\frac32}\big) + 2j^{\frac12} - 2\big(j^{\frac32} - (j-1)^{\frac32}\big)\Big] \; = \; \sum_{j=1}^{n^2}j^{\frac12} - \tfrac23\sum_{j=1}^{n^2}\big(j^{\frac32} - (j-1)^{\frac32}\big) \\ & = \; \sum_{j=1}^{n^2} j^{\frac12} - \tfrac23n^{3} \end{aligned}

@Mark Hennings Would it be correct to say that { x 2 } = x 2 x 2 \{x^2\} = x^2 - \lfloor x^2\rfloor ?

John Frank - 3 years, 2 months ago

Log in to reply

Yes indeed

Mark Hennings - 3 years, 2 months ago

@Mark Hennings Question: I believe that 2 3 j = 1 n 2 ( j 3 2 ( j 1 ) 3 2 ) \displaystyle\frac23\sum_{j=1}^{n^2}(j^{\frac32} - (j-1)^{\frac32}) is equal to 2 3 n 3 \frac23 n^3 . My reasoning is that: j = 1 n 2 ( j 3 2 ( j 1 ) 3 2 ) = j = 1 n 2 ( j 3 2 ) j = 0 n 2 1 ( j 3 2 ) = ( n 2 ) 3 2 + j = 1 n 2 1 ( j 3 2 ) j = 1 n 2 1 ( j 3 2 ) ( 0 ) 3 2 = n 3 \begin{aligned} \sum_{j=1}^{n^2}(j^{\frac32} - (j-1)^{\frac32}) & = \sum_{j=1}^{n^2}(j^\frac32) - \sum_{j=0}^{n^2-1}(j^\frac32) \\ & = (n^2)^\frac32 + \sum_{j=1}^{n^2-1}(j^\frac32) - \sum_{j=1}^{n^2-1}(j^\frac32) - (0)^\frac32 \\ & = n^3 \end{aligned} Have I made a mistake somewhere?

John Frank - 3 years, 2 months ago

Log in to reply

No, you are right. I have edited the question appropriately.

Mark Hennings - 3 years, 2 months ago
Chew-Seong Cheong
Apr 22, 2018

I = 0 n { x 2 } d x = k = 0 n 2 1 k k + 1 ( x 2 k ) d x = k = 0 n 2 1 [ x 3 3 k x ] k k + 1 = k = 0 n 2 1 k + 1 3 k 3 3 k = 0 n 2 1 ( k k + 1 k k ) = n 3 3 k = 0 n 2 1 ( ( k + 1 ) k + 1 k k k + 1 ) = n 3 3 n 3 + k = 0 n 2 1 k + 1 = k = 1 n 2 k 2 3 n 3 \begin{aligned} I & = \int_0^n \left \{x^2\right \} dx \\ & = \sum_{k=0}^{n^2-1} \int_{\sqrt k}^{\sqrt{k+1}} \left(x^2-k\right) dx \\ & = \sum_{k=0}^{n^2-1} \left[\frac {x^3}3 - kx \right]_{\sqrt k}^{\sqrt{k+1}} \\ & = \sum_{k=0}^{n^2-1} \frac {\sqrt{k+1}^3- \sqrt k^3}3 - \sum_{k=0}^{n^2-1} \left(k\sqrt{k+1} - k \sqrt k\right) \\ & = \frac {n^3}3 - \sum_{k=0}^{n^2-1} \left((k+1)\sqrt{k+1} - k \sqrt k - \sqrt {k+1} \right) \\ & = \frac {n^3}3 - n^3 + \sum_{k=0}^{n^2-1} \sqrt {k+1} \\ & = \sum_{k=1}^{n^2} \sqrt k - \frac 23 n^3 \end{aligned}

Therefore, I + 2 3 n 2 = k = 1 n 2 k I+\dfrac 23n^2 = \displaystyle \boxed{\sum_{k=1}^{n^2} \sqrt k} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...