For n ∈ N , what is
∫ 0 n { x 2 } d x + 3 2 n 3 = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Mark Hennings Would it be correct to say that { x 2 } = x 2 − ⌊ x 2 ⌋ ?
@Mark Hennings Question: I believe that 3 2 j = 1 ∑ n 2 ( j 2 3 − ( j − 1 ) 2 3 ) is equal to 3 2 n 3 . My reasoning is that: j = 1 ∑ n 2 ( j 2 3 − ( j − 1 ) 2 3 ) = j = 1 ∑ n 2 ( j 2 3 ) − j = 0 ∑ n 2 − 1 ( j 2 3 ) = ( n 2 ) 2 3 + j = 1 ∑ n 2 − 1 ( j 2 3 ) − j = 1 ∑ n 2 − 1 ( j 2 3 ) − ( 0 ) 2 3 = n 3 Have I made a mistake somewhere?
Log in to reply
No, you are right. I have edited the question appropriately.
I = ∫ 0 n { x 2 } d x = k = 0 ∑ n 2 − 1 ∫ k k + 1 ( x 2 − k ) d x = k = 0 ∑ n 2 − 1 [ 3 x 3 − k x ] k k + 1 = k = 0 ∑ n 2 − 1 3 k + 1 3 − k 3 − k = 0 ∑ n 2 − 1 ( k k + 1 − k k ) = 3 n 3 − k = 0 ∑ n 2 − 1 ( ( k + 1 ) k + 1 − k k − k + 1 ) = 3 n 3 − n 3 + k = 0 ∑ n 2 − 1 k + 1 = k = 1 ∑ n 2 k − 3 2 n 3
Therefore, I + 3 2 n 2 = k = 1 ∑ n 2 k .
Problem Loading...
Note Loading...
Set Loading...
∫ 0 n { x 2 } d x = j = 1 ∑ n 2 ∫ j − 1 j { x 2 } d x = j = 1 ∑ n 2 ∫ j − 1 j 2 u 2 1 { u } d u = j = 1 ∑ n 2 ∫ 0 1 2 ( j − 1 + y ) 2 1 y d y = 2 1 j = 1 ∑ n 2 [ 3 2 ( j − 1 + y ) 2 3 − 2 ( j − 1 ) ( j − 1 + y ) 2 1 ] 0 1 = 2 1 j = 1 ∑ n 2 [ 3 2 ( j 2 3 − ( j − 1 ) 2 3 ) − 2 ( j − 1 ) ( j 2 1 − ( j − 1 ) 2 1 ) ] = 2 1 j = 1 ∑ n 2 [ 3 2 ( j 2 3 − ( j − 1 ) 2 3 ) + 2 j 2 1 − 2 ( j 2 3 − ( j − 1 ) 2 3 ) ] = j = 1 ∑ n 2 j 2 1 − 3 2 j = 1 ∑ n 2 ( j 2 3 − ( j − 1 ) 2 3 ) = j = 1 ∑ n 2 j 2 1 − 3 2 n 3