Fractional parts.

Level pending

Extend the above diagram to n n congruent circles where n n is a odd positive integer.

In square A B C D ABCD , one of the vertices of square A J P 1 I AJP_{1}I touches E 1 F 1 \overline{E_{1}F_{1}} at P 1 P_{1} and E j F j \overline{E_{j}F_{j}} is tangent to circle C j C_{j} at P j P_{j} for each integer j j , where ( 1 j n ) (1 \leq j \leq n) and the radius of each congruent circle is half the side of the square A J P 1 I AJP_{1}I .

Let A T A_{T} be the area of the green shaded hexagonal region.

Find the value of n n for which A T A A B C D = \dfrac{A_{T}}{A_{ABCD}} = 8 ( 2 1 ) { n 2 } 16 ( { n 2 } ) 2 ( 2 n + 3 2 1 ) 2 + 212 2 281 49 \dfrac{8(\sqrt{2} - 1)\left\{\dfrac{n}{2}\right\} - 16(\left\{\dfrac{n}{2}\right\})^2}{(2n + 3\sqrt{2} - 1)^2} + \dfrac{212\sqrt{2} - 281}{49} ,

where { n 2 } \left\{\dfrac{n}{2}\right\} represents the fractional part of the number n 2 \dfrac{n}{2} .

Refer to previous problem(Case n - even)


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 18, 2020

Let n n be a fixed odd integer, a a a side of square A B C D ABCD and x x a side of square A J P 1 I AJP_{1}I .

Extending the diagram to n n odd congruent circles we obtain:

2 a = 2 x + ( n 1 ) x + x 2 + x 2 4 a = ( 6 + 2 ( 2 n 1 ) ) x \sqrt{2}a = \sqrt{2}x + (n - 1)x + \dfrac{x}{2} + \dfrac{x}{\sqrt{2}} \implies 4a = (6 + \sqrt{2}(2n - 1))x \implies

x = 4 a 6 + 2 ( 2 n 1 ) = 4 a 2 ( 3 2 + ( 2 n 1 ) ) = x = \dfrac{4a}{6 + \sqrt{2}(2n - 1)} = \dfrac{4a}{\sqrt{2}(3\sqrt{2} + (2n - 1))} = 2 2 3 2 + ( 2 n 1 ) a \dfrac{2\sqrt{2}}{3\sqrt{2} + (2n - 1)}a

C P n 2 + 1 = ( n ( n 2 + 1 ) + 1 2 + 1 2 ) x = \overline{CP_{\lfloor{\dfrac{n}{2}\rfloor + 1}}} = (n - (\lfloor{\dfrac{n}{2}}\rfloor + 1) + \dfrac{1}{2} + \dfrac{1}{\sqrt{2}})x =

2 ( n n 2 ) + 2 1 2 x \dfrac{2(n - \lfloor{\dfrac{n}{2}}\rfloor) + \sqrt{2} - 1}{2}x

Let a n = n n 2 a_{n} = n - \lfloor{\dfrac{n}{2}}\rfloor \implies C P n 2 + 1 = 2 ( 2 a n + 2 1 ) a 3 2 + 2 n 1 \overline{CP_{\lfloor{\dfrac{n}{2}\rfloor + 1}}} = \dfrac{\sqrt{2}(2a_{n} + \sqrt{2} - 1)a}{3\sqrt{2} + 2n - 1}

A 1 = ( C P n 2 + 1 ) 2 = \implies A_{\triangle{1}} = (\overline{CP_{\lfloor{\dfrac{n}{2}\rfloor + 1}}})^2 = 2 ( 2 a n + 2 1 ) 2 a 2 ( 2 n + 3 2 1 ) 2 \dfrac{2(2a_{n} + \sqrt{2}- 1)^2a^2}{(2n + 3\sqrt{2} - 1)^2}

A P n 2 = ( 2 + ( n 2 1 ) ) x = \overline{AP_{\lfloor{\dfrac{n}{2}\rfloor}}} = (\sqrt{2} + (\lfloor{\dfrac{n}{2}}\rfloor - 1))x = 2 2 ( n 2 + 2 1 ) 2 n + 3 2 1 a \dfrac{2\sqrt{2}(\lfloor{\dfrac{n}{2}}\rfloor + \sqrt{2} - 1)}{2n + 3\sqrt{2} - 1}a

Let b n = n 2 b_{n} = \lfloor{\dfrac{n}{2}\rfloor}

A 2 = ( A P b n ) 2 = 8 ( b n + 2 1 ) 2 ( 2 n + 3 2 1 ) 2 a 2 \implies A_{\triangle{2}} = (\overline{AP_{b_{n}}})^2 = \dfrac{8(b_{n} + \sqrt{2} - 1)^2}{(2n + 3\sqrt{2} - 1)^2}a^2

A 1 + A 2 = 2 ( 4 ( a n 2 + b n 2 ) + 4 ( 2 1 ) ( a n + 2 b n ) + 5 ( 3 2 ) ) ( 2 n + 3 2 1 ) 2 a 2 \implies A_{\triangle{1}} + A_{\triangle{2}} = \dfrac{2(4(a_{n}^2 + b_{n}^2) + 4(\sqrt{2} - 1)(a_{n} + 2b_{n}) + 5(3 - \sqrt{2}))}{(2n + 3\sqrt{2} - 1)^2}a^2

a n = n n 2 = n 2 + { n 2 } a_{n} = n - \lfloor{\dfrac{n}{2}}\rfloor = \dfrac{n}{2} + \left\{\dfrac{n}{2}\right\} and b n = n 2 = n 2 { n 2 } b_{n} = \lfloor{\dfrac{n}{2}\rfloor} = \dfrac{n}{2} - \left\{\dfrac{n}{2}\right\}

A 1 + A 2 = \implies A_{\triangle{1}} + A_{\triangle{2}} = 2 ( 2 n 2 + 6 ( 2 1 ) n + 5 ( 3 2 2 ) + 8 ( { n 2 } ) 2 4 { n 2 } ( 2 n + 3 2 1 ) 2 a 2 \dfrac{2(2n^2 + 6(\sqrt{2} - 1)n + 5(3 - 2\sqrt{2}) + 8(\left\{\dfrac{n}{2}\right\})^2 - 4\left\{\dfrac{n}{2}\right\}}{(2n + 3\sqrt{2} - 1)^2}a^2

A T = a 2 ( A 1 + A 2 ) A_{T} = a^2 - (A_{\triangle{1}} + A_{\triangle{2}})

A T A A B C D = 8 n + 14 2 11 ( 2 n + 3 2 1 ) 2 + 8 ( 2 1 ) { n 2 } 16 ( { n 2 } ) 2 ( 2 n + 3 2 1 ) 2 \implies \dfrac{A_{T}}{A_{ABCD}} = \dfrac{8n + 14\sqrt{2} - 11}{(2n + 3\sqrt{2} - 1)^2} + \dfrac{8(\sqrt{2} - 1)\left\{\dfrac{n}{2}\right\} - 16(\left\{\dfrac{n}{2}\right\})^2}{(2n + 3\sqrt{2} - 1)^2}

= 8 ( 2 1 ) { n 2 } 16 ( { n 2 } ) 2 ( 2 n + 3 2 1 ) 2 + 212 2 281 49 = \dfrac{8(\sqrt{2} - 1)\left\{\dfrac{n}{2}\right\} - 16(\left\{\dfrac{n}{2}\right\})^2}{(2n + 3\sqrt{2} - 1)^2} + \dfrac{212\sqrt{2} - 281}{49} \implies

8 n + 14 2 11 ( 2 n + 3 2 1 ) 2 = 212 2 281 49 \dfrac{8n + 14\sqrt{2} - 11}{(2n + 3\sqrt{2} - 1)^2} = \dfrac{212\sqrt{2} - 281}{49} \implies

392 n + 686 2 539 = ( 848 2 1124 ) n 2 + ( 6212 4220 2 ) n + 5714 2 7883 392n + 686\sqrt{2} - 539 = (848\sqrt{2} - 1124)n^2 + (6212 - 4220\sqrt{2})n + 5714\sqrt{2} - 7883

\implies

( 212 2 281 ) n 2 + ( 1455 1055 2 ) n + 1257 2 1836 = 0 (212\sqrt{2} - 281)n^2 + (1455 - 1055\sqrt{2})n + 1257\sqrt{2} - 1836 = 0

After simplifying and dropping the negative root we obtain:

n = ( 212 2 + 281 ) 147539 100254 2 + 38465 12005 2 21854 n = \dfrac{(212\sqrt{2} + 281)\sqrt{147539 - 100254\sqrt{2}} + 38465 - 12005\sqrt{2}}{21854}

= ( 212 2 + 218 ) ( 7 ( 6913 2 7359 ) 223 ) + 38465 12005 2 21854 = = \dfrac{(212\sqrt{2} + 218)(\dfrac{7(6913\sqrt{2} - 7359)}{223}) + 38465 - 12005\sqrt{2}}{21854} =

2677115 2 + 6042631 + 8577695 2677115 2 4873442 = 14620326 4873442 = 3 \dfrac{2677115\sqrt{2} + 6042631 + 8577695 - 2677115\sqrt{2}}{4873442} = \dfrac{14620326}{4873442} = \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...