∫ 0 1 ∫ 0 1 { y x } 3 { x y } 3 d x d y = A − C π B − D π B + 2 − ζ ( E )
The equation above holds true for positive integers A , B , C , D and E . Find A + B + C + D + E .
Notations :
{ ⋅ } denotes the fractional part function .
ζ ( ⋅ ) denotes the Riemann zeta function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Yes this was the correct method!
I think its not correct answer it should be 1 − 4 1 ( ζ ( 2 ) + ζ ( 3 ) + ζ ( 4 ) ) giving us 1 − 2 4 π 2 − 4 ζ ( 3 ) − 3 6 0 π 4
Problem Loading...
Note Loading...
Set Loading...
this is a result of this ultimate generalized form
∫ 0 1 ∫ 0 1 { y x } a { x y } b d x d y = 2 ( b + 1 ) ! a ! n = 1 ∑ ∞ ( b + n ) ! ( a + n ) ! ( ζ ( a + n + 1 ) − 1 ) + 2 ( a + 1 ) ! b ! n = 1 ∑ ∞ ( a + n ) ! ( b + n ) ! ( ζ ( b + n + 1 ) − 1 )
we let y x = u then the integral converts to
∫ 0 1 x ∫ x ∞ { u } a { u 1 } b u 2 d u
integrating by parts we get
∫ 0 1 x ∫ x ∞ { u } a { u 1 } b u 2 d u = ( 2 x 2 ∫ x ∞ { u } a { u 1 } b u 2 d u ) ∣ ∣ ∣ x = 0 x = 1 + 2 1 ∫ 0 1 x a { x 1 } b d x = 2 1 ∫ 0 1 x b { x 1 } a d x + 2 1 ∫ 0 1 x a { x 1 } b d x
see this for the evaluation of the above integrals
putting that in we get
∫ 0 1 ∫ 0 1 { y x } a { x y } b d x d y = 2 ( b + 1 ) ! a ! n = 1 ∑ ∞ ( b + n ) ! ( a + n ) ! ( ζ ( a + n + 1 ) − 1 ) + 2 ( a + 1 ) ! b ! n = 1 ∑ ∞ ( a + n ) ! ( b + n ) ! ( ζ ( b + n + 1 ) − 1 )
putting a = b = 3 we get ∫ 0 1 { y x } 3 { x y } 3 d x = 1 − 2 4 π 2 − 3 6 0 π 4 − ζ ( 3 )