Fractional Party! 1

Calculus Level 5

0 1 0 1 { x y } 3 { y x } 3 d x d y = A π B C π B + 2 D ζ ( E ) \large \int_0^1 \int _{ 0 }^{ 1 }{ { \left\{ \dfrac { x }{ y } \right\} }^{ 3 }{ \left\{ \dfrac { y }{ x } \right\} }^{ 3 } \, dx \; dy } =A-\dfrac { { \pi }^{ B } }{ C } -\dfrac { { \pi }^{ B+2 } }{ D } -\zeta \left( E \right)

The equation above holds true for positive integers A , B , C , D A,B,C,D and E E . Find A + B + C + D + E A+B+C+D+E .

Notations :


The answer is 390.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hamza A
Apr 5, 2016

this is a result of this ultimate generalized form

0 1 0 1 { x y } a { y x } b d x d y = a ! 2 ( b + 1 ) ! n = 1 ( a + n ) ! ( b + n ) ! ( ζ ( a + n + 1 ) 1 ) + b ! 2 ( a + 1 ) ! n = 1 ( b + n ) ! ( a + n ) ! ( ζ ( b + n + 1 ) 1 ) \displaystyle\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1 }{ \left\{ \frac { x }{ y } \right\} ^{ a }\left\{ \frac { y }{ x } \right\} ^{ b }dxdy } } =\frac { a! }{ 2(b+1)! } \displaystyle\sum _{ n=1 }^{ \infty }{ \frac { (a+n)! }{ (b+n)! } (\zeta (a+n+1)-1) } +\frac { b! }{ 2(a+1)! } \displaystyle\sum _{ n=1 }^{ \infty }{ \frac { (b+n)! }{ (a+n)! } } (\zeta (b+n+1)-1)

we let x y = u \frac { x }{ y } =u then the integral converts to

0 1 x x { u } a { 1 u } b d u u 2 \displaystyle\int _{ 0 }^{ 1 }{ x\int _{ x }^{ \infty }{ \{ u\} ^{ a }\left\{ \frac { 1 }{ u } \right\} ^{ b }\frac { du }{ { u }^{ 2 } } } }

integrating by parts we get

0 1 x x { u } a { 1 u } b d u u 2 = ( x 2 2 x { u } a { 1 u } b d u u 2 ) x = 0 x = 1 + 1 2 0 1 x a { 1 x } b d x = 1 2 0 1 x b { 1 x } a d x + 1 2 0 1 x a { 1 x } b d x \displaystyle\int _{ 0 }^{ 1 }{ x\int _{ x }^{ \infty }{ \{ u\} ^{ a }\left\{ \frac { 1 }{ u } \right\} ^{ b }\frac { du }{ { u }^{ 2 } } } } =\left( \frac { { x }^{ 2 } }{ 2 } \displaystyle\int _{ x }^{ \infty }{ \{ u\} ^{ a }\left\{ \frac { 1 }{ u } \right\} ^{ b }\frac { du }{ { u }^{ 2 } } } \right)\Big|_{x=0}^{x=1} +\frac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ 1 }{ { x }^{ a }\left\{ \frac { 1 }{ x } \right\} ^{ b }dx } =\\ \frac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ 1 }{ { x }^{ b }\left\{ \frac { 1 }{ x } \right\} ^{ a }dx } +\frac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ 1 }{ { x }^{ a }\left\{ \frac { 1 }{ x } \right\} ^{ b }dx }

see this for the evaluation of the above integrals

putting that in we get

0 1 0 1 { x y } a { y x } b d x d y = a ! 2 ( b + 1 ) ! n = 1 ( a + n ) ! ( b + n ) ! ( ζ ( a + n + 1 ) 1 ) + b ! 2 ( a + 1 ) ! n = 1 ( b + n ) ! ( a + n ) ! ( ζ ( b + n + 1 ) 1 ) \displaystyle\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1 }{ \left\{ \frac { x }{ y } \right\} ^{ a }\left\{ \frac { y }{ x } \right\} ^{ b }dxdy } } =\frac { a! }{ 2(b+1)! } \displaystyle\sum _{ n=1 }^{ \infty }{ \frac { (a+n)! }{ (b+n)! } (\zeta (a+n+1)-1) } +\frac { b! }{ 2(a+1)! } \displaystyle\sum _{ n=1 }^{ \infty }{ \frac { (b+n)! }{ (a+n)! } } (\zeta (b+n+1)-1)

putting a = b = 3 a=b=3 we get 0 1 { x y } 3 { y x } 3 d x = 1 π 2 24 π 4 360 ζ ( 3 ) \boxed{\displaystyle\int _{ 0 }^{ 1 }{ { \left\{ \frac { x }{ y } \right\} }^{ 3 }{ \left\{ \frac { y }{ x } \right\} }^{ 3 }dx } =1-\frac { { \pi }^{ 2 } }{ 24 } -\frac { { \pi }^{ 4 } }{ 360 } -\zeta \left( 3 \right)}

Yes this was the correct method!

Aditya Kumar - 5 years, 2 months ago

I think its not correct answer it should be 1 1 4 ( ζ ( 2 ) + ζ ( 3 ) + ζ ( 4 ) ) 1 -\frac{1}{4}\left(\zeta(2)+\zeta(3)+\zeta(4)\right) giving us 1 π 2 24 ζ ( 3 ) 4 π 4 360 1-\frac{\pi^2}{24}-\frac{\zeta(3)}{4} -\frac{\pi^4}{360}

Naren Bhandari - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...