Fractional Summations 2018.

Algebra Level 3

Find the integral part of

n = 1 99 10 + n n = 1 99 10 n \large\ \frac {\displaystyle \sum _{n=1}^{ 99 }{ \sqrt { 10 + \sqrt n } } }{\displaystyle \sum _{ n=1 }^{ 99 }{ \sqrt { 10 - \sqrt n } } } .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Apr 20, 2018

n = 1 99 10 + n n = 1 99 10 n = n = 1 99 20 + 2 n n = 1 99 20 2 n \dfrac{\sum_{n=1}^{99} \sqrt{10 + \sqrt n}}{\sum_{n=1}^{99}\sqrt{10 - \sqrt n}} = \dfrac{\sum_{n=1}^{99} \sqrt{20 + 2\sqrt n}}{\sum_{n=1}^{99}\sqrt{20 - 2\sqrt n}}

Note that 20 + 2 n = 10 + n + 10 n \sqrt{ 20+2\sqrt {n}} = \sqrt{10+ \sqrt{n}} + \sqrt{10- \sqrt{n}} Further note that n n and 100 n 100-n are symmteric for 1 N 99 1\leq N \leq 99 . 20 + n = 10 + 100 n + 10 100 n \small\sqrt{20+\sqrt{n}} = \sqrt{10+ \sqrt{100-n}} + \sqrt{10- \sqrt{100-n}} therefore, n = 1 99 20 + 2 n n = 1 99 20 2 n = n = 1 99 10 + 100 n + 10 + 100 n n = 1 99 10 100 n 10 100 n \dfrac{\sum_{n=1}^{99} \sqrt{20 + 2\sqrt n}}{\sum_{n=1}^{99}\sqrt{20 - 2\sqrt n}} = \dfrac{\sum_{n=1}^{99} \sqrt{10 + \sqrt {100-n}} + \sqrt{10 + \sqrt{100-n}}}{\sum_{n=1}^{99}\sqrt{10 - \sqrt {100-n}}- \sqrt{10 - \sqrt{100-n}}} Now let us assign n = 1 99 10 + n = a \sum_{n=1}^{99} \sqrt{10 + \sqrt n} = a and n = 1 99 10 n = b \sum_{n=1}^{99} \sqrt{10 - \sqrt n} = b . Hence we can write the above summation as a b = a + b a b a 2 + 2 a b b 2 = 0 ( a b ) 2 + 2 ( a b ) 1 = 0 \dfrac{a}{ b} = \dfrac{a+b}{a-b} \\ a^2 +2ab -b^2 =0 \\ \left(\dfrac{a}{b}\right)^2 + 2\left(\dfrac{a}{b}\right) -1 =0 Solving quadratic equation in a b \dfrac{a}{b} is a b = 1 + 2 \dfrac{a}{b} = 1 + \sqrt 2 . Therefore, the integral part(integer part) is 2 \boxed{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...