Fractionizers

Algebra Level 2

What is x + y x+y ?

{ 1 5 x = 3 5 y 15 = 3 5 \large \begin{cases} 15^{x}=\dfrac{3}{5} \\ y^{15}=\dfrac{3}{5} \end{cases}

Note: Write your answer to the nearest hundredths.


The answer is 0.78.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 19, 2019

{ 1 5 x = 3 5 x log 15 = log 3 log 5 x = log 3 log 5 log 15 y 15 = 3 5 y = ( 3 5 ) 1 15 \begin{cases} 15^x = \dfrac 35 & \implies x \log 15 = \log 3 - \log 5 \implies x = \dfrac {\log 3 - \log 5}{\log 15} \\ y^{15} = \dfrac 35 & \implies y = \left(\dfrac 35\right)^\frac 1{15} \end{cases}

x + y = log 3 log 5 log 15 + ( 3 5 ) 1 15 0.78 \implies x + y = \dfrac {\log 3 - \log 5}{\log 15} + \left(\dfrac 35\right)^\frac 1{15} \approx \boxed{0.78}

Kaizen Cyrus
May 18, 2019

Solving for x x :

1 5 x = 3 5 x = log 15 3 5 x = log 3 5 log 15 \begin{aligned} 15^{x} & = \dfrac{3}{5} \\ x & = \log_{15}{\dfrac{3}{5}} \\ x & = \dfrac{\log \dfrac{3}{5}}{\log 15} \end{aligned}

Solving for y y :

y 15 = 3 5 y 15 15 = 3 5 15 y = 3 15 5 15 \begin{aligned} y^{15} & = \dfrac{3}{5} \\ \sqrt[15]{y^{15}} & = \sqrt[15]{\dfrac{3}{5}} \\ y & = \dfrac{\sqrt[15]{3}}{\sqrt[15]{5}} \end{aligned}

Solving for x + y x+y :

log 3 5 log 15 + 3 15 5 15 0.51086 2.70805 + 1.07599 1.11326 0.18863 + 0.96652 0.78 \dfrac{\log \dfrac{3}{5}}{\log 15} + \dfrac{\sqrt[15]{3}}{\sqrt[15]{5}} \approx -\dfrac{0.51086}{2.70805} + \dfrac{1.07599}{1.11326} \approx -0.18863+0.96652 \approx \boxed{0.78}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...