Fractional Factorials

( 10 ! + 9 ! ) ( 8 ! + 7 ! ) ( 6 ! + 5 ! ) ( 4 ! + 3 ! ) ( 2 ! + 1 ! ) ( 10 ! 9 ! ) ( 8 ! 7 ! ) ( 6 ! 5 ! ) ( 4 ! 3 ! ) ( 2 ! 1 ! ) = ? \large \dfrac{(10!\color{#20A900}{+}9!)(8!\color{#20A900}{+}7!)(6!\color{#20A900}{+}5!)(4!\color{#20A900}{+}3!)(2!\color{#20A900}{+}1!)}{(10!\color{#D61F06}{-}9!)(8!\color{#D61F06}{-}7!)(6!\color{#D61F06}{-}5!)(4!\color{#D61F06}{-}3!)(2!\color{#D61F06}{-}1!)} = \, \, \large ?

11 11 1 11 \frac{1}{11} 10 10 10 ! 10!

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Akhil Bansal
Dec 7, 2015

= ( 10 ! + 9 ! ) ( 8 ! + 7 ! ) ( 6 ! + 5 ! ) ( 4 ! + 3 ! ) ( 2 ! + 1 ! ) ( 10 ! 9 ! ) ( 8 ! 7 ! ) ( 6 ! 5 ! ) ( 4 ! 3 ! ) ( 2 ! 1 ! ) \large = \dfrac{(10!\color{#20A900}{+}9!)(8!\color{#20A900}{+}7!)(6!\color{#20A900}{+}5!)(4!\color{#20A900}{+}3!)(2!\color{#20A900}{+}1!)}{(10!\color{#D61F06}{-}9!)(8!\color{#D61F06}{-}7!)(6!\color{#D61F06}{-}5!)(4!\color{#D61F06}{-}3!)(2!\color{#D61F06}{-}1!)}

= 9 ! ( 10 + 1 ) 7 ! ( 8 + 1 ) 5 ! ( 6 + 1 ) 3 ! ( 4 + 1 ) 1 ! ( 2 + 1 ) 9 ! ( 10 1 ) 7 ! ( 8 1 ) 5 ! ( 6 1 ) 3 ! ( 4 1 ) 1 ! ( 2 1 ) \large = \dfrac{9!(10 \color{#20A900}{+}1)\cdot 7!(8 \color{#20A900}{+}1)\cdot5!(6 \color{#20A900}{+}1 )\cdot3!(4 \color{#20A900}{+} 1)\cdot1!(2\color{#20A900}{+}1)}{9!(10 \color{#D61F06}{-}1)\cdot7!(8 \color{#D61F06}{-}1)\cdot5!(6 \color{#D61F06}{-}1 )\cdot3!(4 \color{#D61F06}{-}1)\cdot1!(2\color{#D61F06}{-}1)}

= ( 10 + 1 ) ( 8 + 1 ) ( 6 + 1 ) ( 4 + 1 ) ( 2 + 1 ) ( 10 1 ) ( 8 1 ) ( 6 1 ) ( 4 1 ) ( 2 1 ) \large = \dfrac{(10\color{#20A900}{+}1)\cdot (8 \color{#20A900}{+}1)\cdot(6\color{#20A900}{+} 1 )\cdot(4 \color{#20A900}{+}1)\cdot(2\color{#20A900}{+}1)}{(10 \color{#D61F06}{-}1)\cdot(8 \color{#D61F06}{-}1)\cdot(6 \color{#D61F06}{-}1 )\cdot(4 \color{#D61F06}{-}1)\cdot(2\color{#D61F06}{-}1)}

= 11 × 9 × 7 × 5 × 3 9 × × 7 × 5 × 3 × 1 \large = \dfrac{11 \times 9 \times 7 \times 5 \times 3}{9 \times \times 7 \times 5 \times 3 \times 1}

= 11 \large = 11

good way of simplifying by taking out the factors *

Syed Hamza Khalid - 4 years, 1 month ago
Isaac Reid
Dec 7, 2015

It might help to read up on what factorial means. Firstly, note that 10 ! = 10 × 9 ! 10!=10\times 9! . This means that 10 ! + 9 ! = 10 × 9 ! + 9 ! = 11 × 9 ! 10!+9!=10\times 9! + 9! = 11\times 9! and 10 ! 9 ! = 10 × 9 ! 9 ! = 9 × 9 ! 10!-9!=10\times 9! - 9! = 9\times 9! , for example. Therefore, the expression simplifies to:

( 11 × 9 ! ) ( 9 × 7 ! ) ( 7 × 5 ! ) ( 5 × 3 ! ) ( 3 × 1 ! ) ( 9 × 9 ! ) ( 7 × 7 ! ) ( 5 × 5 ! ) ( 3 × 3 ! ) ( 1 × 1 ! ) \frac{(11\times 9!)(9\times 7!)(7\times 5!)(5\times 3!)(3\times 1!)}{(9\times 9!)(7\times 7!)(5\times 5!)(3\times 3!)(1\times 1!)} .

The terms which are present in both the numerator and denominator (e.g. 9 ! 9! , 9 9 and 7 ! 7! ) cancel, leaving us with 11 1 \frac{11}{1} . So the answer is 11 \boxed{11} .

Austin Joseph
Dec 23, 2015

One way to do this faster is to notice that the first term is a multiple of the second term. And then set the second term to a variable and add and subtract regularly and then notice the odd pattern and just cancel out everything except 11.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...