Fractions at 2015

2 2015 × 6 2013 × 10 2011 × . . . × 4022 5 × 4026 3 × 4030 1 \large \frac {2}{2015} \times \frac {6}{2013} \times \frac {10}{2011} \times ... \times \frac {4022}{5} \times \frac {4026}{3} \times \frac {4030}{1}

What is the remainder if the expression above is divided by 7?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tijmen Veltman
May 31, 2015

We can rearrange to find:

2 2015 × 6 2013 × 10 2011 × × 4022 5 × 4026 3 × 4030 1 \frac2{2015}\times\frac6{2013}\times\frac{10}{2011}\times\ldots\times\frac{4022}5\times\frac{4026}3\times\frac{4030}1

= 2 1 × 6 3 × 10 5 × × 4022 2011 × 4026 2013 × 4030 2015 =\frac21\times\frac63\times\frac{10}5\times\ldots \times\frac{4022}{2011}\times\frac{4026}{2013}\times\frac{4030}{2015}

= 2 2016 2 = 2 1008 =2^{\frac{2016}2}=2^{1008} .

Since 2 3 = 8 1 ( mod 7 ) 2^3=8\equiv 1 (\text{mod }7) , we get 2 1008 = ( 2 3 ) 336 1 ( mod 7 ) 2^{1008}=(2^3)^{336}\equiv \boxed{1} (\text{mod }7) .

Moderator note:

Yes, that's one way to solve without resorting to Fermat's little theorem. For the sake of variety, can you solve this via Fermat's little theorem?

Same method :)

Nihar Mahajan - 6 years ago

If we use Fermat's little theorem, we get (a weaker result) that 2 6 1 ( mod 7 ) 2^6\equiv 1 (\text{mod }7) and hence 2 1008 = ( 2 6 ) 168 1 ( mod 7 ) 2^{1008}=(2^6)^{168}\equiv\boxed{1}(\text{mod }7) .

Tijmen Veltman - 6 years ago

hey guys, how can i learn mod? i never know it until i'm a brilliant member. thx

Ardianto Kurniawan - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...