Fractions sum to 1?

Find number of solutions in positive integers of the following equation,

1 a + 1 b + 1 c + 1 d = 1 \large \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =1 with a b c d a\le b\le c \le d .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Margaret Yu
Jun 3, 2016

1 a + 1 b + 1 c + 1 d = 1 \large \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =1

Since a b c d a\le b\le c \le d , then 1 d 1 c 1 b 1 a \frac{1}{d}\le \frac{1}{c}\le \frac{1}{b}\le \frac{1}{a}

Note: 1 a < 1 d + 1 c + 1 b + 1 a 1 a + 1 a + 1 a + 1 a \frac{1}{a}< \frac{1}{d} +\frac{1}{c} + \frac{1}{b} + \frac{1}{a}\le \frac{1}{a} +\frac{1}{a} + \frac{1}{a} + \frac{1}{a}

1 a < 1 4 a \frac{1}{a}<1 \le \frac{4}{a}

1 < a 4 1 < a \le \ 4

We have 3 3 cases: a = 2 , a = 3 a=2, a=3 and a = 4 a=4

Case 1: a=2

1 2 + 1 b + 1 c + 1 d = 1 \dfrac{1}{2}+\dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =1

1 b + 1 c + 1 d = 1 2 \dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =\dfrac{1}{2}

Note: 1 b < 1 d + 1 c + 1 b 1 b + 1 b + 1 b \dfrac{1}{b}< \dfrac{1}{d} + \dfrac{1}{c} + \dfrac{1}{b}\le \dfrac{1}{b} +\dfrac{1}{b} + \dfrac{1}{b}

1 b < 1 2 1 b + 1 b + 1 b \dfrac{1}{b}< \dfrac{1}{2}\le \dfrac{1}{b} +\dfrac{1}{b} + \dfrac{1}{b}

1 b < 1 2 3 b \dfrac{1}{b}< \dfrac{1}{2}\le \dfrac{3}{b}

2 < b 6 2< b \le 6

We have 4 4 subcases: b = 3 , b = 4 , b = 5 b=3, b=4, b=5 and b = 6 b=6

Case 1.a: a= 2, b=3

1 2 + 1 c + 1 d = 1 2 \dfrac{1}{2}+\dfrac{1}{c} +\dfrac{1}{d} =\dfrac{1}{2}

1 c + 1 d = 1 6 \dfrac{1}{c} +\dfrac{1}{d} =\dfrac{1}{6}

Note: 1 c < 1 d + 1 c 1 c + 1 c \dfrac{1}{c}< \dfrac{1}{d} + \dfrac{1}{c}\le \dfrac{1}{c} +\dfrac{1}{c}

1 c < 1 6 2 c \dfrac{1}{c}< \dfrac{1}{6}\le \dfrac{2}{c}

6 < c 12 6< c\le \ 12

We now have the values for a, b, and c, so we solve for d. We’ll get that the ordered pairs that satisfy 1 a + 1 b + 1 c + 1 d = 1 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =1 are: ( 2 , 3 , 7 , 42 ) , ( 2 , 3 , 8 , 24 ) , ( 2 , 3 , 9 , 18 ) , ( 2 , 3 , 10 , 15 ) , ( 2 , 3 , 12 , 12 ) (2,3,7,42), (2,3,8,24), (2,3,9,18), (2,3,10,15), (2,3,12,12) . 5 \boxed{5}

Case 1.b: a= 2, b=4

1 4 + 1 c + 1 d = 1 2 \dfrac{1}{4}+\dfrac{1}{c} +\dfrac{1}{d} =\dfrac{1}{2}

1 c + 1 d = 1 4 \dfrac{1}{c} +\dfrac{1}{d} =\dfrac{1}{4}

Note: 1 c < 1 d + 1 c 1 c + 1 c \dfrac{1}{c}< \dfrac{1}{d} + \dfrac{1}{c}\le \dfrac{1}{c} +\dfrac{1}{c}

1 c < 1 4 2 c \dfrac{1}{c}< \dfrac{1}{4}\le \dfrac{2}{c}

4 < c 8 4< c\le 8

We now have the values for a, b, and c, so we solve for d. We’ll get that the ordered pairs that satisfy 1 a + 1 b + 1 c + 1 d = 1 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =1 are: ( 2 , 4 , 5 , 20 ) , ( 2 , 4 , 6 , 12 ) . ( 2 , 4 , 8 , 8 ) (2,4, 5, 20), (2,4,6,12). (2,4,8,8) . 3 \boxed{3}

Case 1.c: a= 2, b=5

1 5 + 1 c + 1 d = 1 2 \dfrac{1}{5}+\dfrac{1}{c} +\dfrac{1}{d} =\dfrac{1}{2}

1 c + 1 d = 3 10 \dfrac{1}{c} +\dfrac{1}{d} =\dfrac{3}{10}

Note: 1 c < 1 d + 1 c 1 c + 1 c \dfrac{1}{c}< \dfrac{1}{d} + \dfrac{1}{c}\le \dfrac{1}{c} +\dfrac{1}{c}

1 c < 3 10 2 c \dfrac{1}{c}< \dfrac{3}{10}\le \dfrac{2}{c}

10 3 < c 20 3 \dfrac{10}{3}< c\le \dfrac{20}{3}

Since 5 c 5\le c , then 5 c 6 5\le c\le 6

We now have the values for a, b, and c, so we solve for d. We’ll get that the only ordered pair that satisfies 1 a + 1 b + 1 c + 1 d = 1 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =1 is: ( 2 , 5 , 5 , 10 ) (2,5,5,10) . 1 \boxed{1}

Case 1.d: a= 2, b=6

1 6 + 1 c + 1 d = 1 2 \dfrac{1}{6}+\dfrac{1}{c} +\dfrac{1}{d} =\dfrac{1}{2}

1 c + 1 d = 1 3 \dfrac{1}{c} +\dfrac{1}{d} =\dfrac{1}{3}

Note: 1 c < 1 d + 1 c 1 c + 1 c \dfrac{1}{c}< \dfrac{1}{d} + \dfrac{1}{c}\le \dfrac{1}{c} +\dfrac{1}{c}

1 c < 1 3 2 c \dfrac{1}{c}< \dfrac{1}{3}\le \dfrac{2}{c}

3 < c 6 3< c\le 6

Since 6 c 6\le c , then the only possible c is 6.

We now have the values for a, b, and c, so we solve for d. We’ll get that the only ordered pair that satisfies 1 a + 1 b + 1 c + 1 d = 1 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =1 is: ( 2 , 6 , 6 , 6 ) (2,6,6,6) . 1 \boxed{1}

Case 2: a=3

1 3 + 1 b + 1 c + 1 d = 1 \dfrac{1}{3}+\dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =1

1 b + 1 c + 1 d = 2 3 \dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =\dfrac{2}{3}

1 b < 1 d + 1 c + 1 b 1 b + 1 b + 1 b \dfrac{1}{b}< \dfrac{1}{d} + \dfrac{1}{c} + \dfrac{1}{b}\le \dfrac{1}{b} +\dfrac{1}{b} + \dfrac{1}{b}

1 b < 2 3 3 b \dfrac{1}{b}< \dfrac{2}{3}\le \dfrac{3}{b}

3 2 < b 9 2 \dfrac{3}{2}< b \le \dfrac{9}{2}

Since d should be a positive integer,

2 b 4 2\le b \le 4

We have 3 3 subcases: b = 2 , b = 3 b=2, b=3 and b = 4 b=4 , but we can disregard the first case because we know that b = 2 a = 3 b=2\le a=3 and it does not satisfy a b c d a\le b\le c \le d .

Case 2.a: a= 3, b=3

1 3 + 1 c + 1 d = 2 3 \dfrac{1}{3}+\dfrac{1}{c} +\dfrac{1}{d} =\dfrac{2}{3}

1 c + 1 d = 1 3 \dfrac{1}{c} +\dfrac{1}{d} =\dfrac{1}{3}

Note: 1 c < 1 d + 1 c 1 c + 1 c \dfrac{1}{c}< \dfrac{1}{d} + \dfrac{1}{c}\le \dfrac{1}{c} +\dfrac{1}{c}

1 c < 1 3 2 c \dfrac{1}{c}< \dfrac{1}{3}\le \dfrac{2}{c}

3 < c 6 3< c\le 6

We now have the values for a, b, and c, so we solve for d. We’ll get that the ordered pairs that satisfy 1 a + 1 b + 1 c + 1 d = 1 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =1 is: ( 3 , 3 , 4 , 12 ) , ( 3 , 3 , 6 , 6 ) (3,3,4,12), (3,3,6,6) . 2 \boxed{2}

Case 2.b: a= 3, b=4

1 4 + 1 c + 1 d = 2 3 \dfrac{1}{4}+\dfrac{1}{c} +\dfrac{1}{d} =\dfrac{2}{3}

1 c + 1 d = 5 12 \dfrac{1}{c} +\dfrac{1}{d} =\dfrac{5}{12}

Note: 1 c < 1 d + 1 c 1 c + 1 c \dfrac{1}{c}< \dfrac{1}{d} + \dfrac{1}{c}\le \dfrac{1}{c} +\dfrac{1}{c}

1 c < 5 12 2 c \dfrac{1}{c}< \dfrac{5}{12}\le \dfrac{2}{c}

12 5 < c 24 5 \dfrac{12}{5}< c\le \dfrac{24}{5}

Since 4 c 4\le c , then the only possible c is 4.

We now have the values for a, b, and c, so we solve for d. We’ll get that the only ordered pair that satisfies 1 a + 1 b + 1 c + 1 d = 1 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =1 is: ( 3 , 4 , 4 , 6 ) (3,4,4,6) . 1 \boxed{1}

Case 3: a=4

1 4 + 1 b + 1 c + 1 d = 1 \dfrac{1}{4}+\dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =1

1 b + 1 c + 1 d = 3 4 \dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =\dfrac{3}{4}

1 b < 1 d + 1 c + 1 b 1 b + 1 b + 1 b \dfrac{1}{b}< \dfrac{1}{d} + \dfrac{1}{c} + \dfrac{1}{b}\le \dfrac{1}{b} +\dfrac{1}{b} + \dfrac{1}{b}

1 b < 3 4 3 b \dfrac{1}{b}< \dfrac{3}{4}\le \dfrac{3}{b}

4 3 < b 4 \dfrac{4}{3}< b \le 4

Since d should be a positive integer,

2 b 4 2\le b \le 4

We have 3 3 subcases: b = 2 , b = 3 b=2, b=3 and b = 4 b=4 , but we can disregard the first two cases because we know that b = 2 , b = 3 a = 4 b=2, b=3\le a=4 and it does not satisfy a b c d a\le b\le c \le d .

Case 3.a: a= 4, b=4

1 4 + 1 c + 1 d = 3 4 \dfrac{1}{4}+\dfrac{1}{c} +\dfrac{1}{d} =\dfrac{3}{4}

1 c + 1 d = 1 2 \dfrac{1}{c} +\dfrac{1}{d} =\dfrac{1}{2}

Note: 1 c < 1 d + 1 c 1 c + 1 c \dfrac{1}{c}< \dfrac{1}{d} + \dfrac{1}{c}\le \dfrac{1}{c} +\dfrac{1}{c}

1 c < 1 2 2 c \dfrac{1}{c}< \dfrac{1}{2}\le \dfrac{2}{c}

2 < c 4 2< c\le 4

Since 4 c 4\le c , then the only possible c is 4.

We now have the values for a, b, and c, so we solve for d. We’ll get that the only ordered pair that satisfies 1 a + 1 b + 1 c + 1 d = 1 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} +\dfrac{1}{d} =1 is: ( 4 , 4 , 4 , 4 ) (4,4,4,4) . 1 \boxed{1}

5 + 3 + 1 + 1 + 2 + 1 + 1 = 14 5+3+1+1+2+1+1 = \boxed{14}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...