Fractions

Algebra Level 2

What is the value of x x that satisfies the following equation: x x 2 + x 21 x 19 = x + 1 x 1 + x 20 x 18 ? \frac{x}{x-2}+\frac{x-21}{x-19}=\frac{x+1}{x-1}+\frac{x-20}{x-18}?

10 12 13 11

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ahmed Luqman
Oct 11, 2014

Add the fractions on both sides: x ( x 19 ) + ( x 21 ) ( x 2 ) ( x 2 ) ( x 19 ) = ( x + 1 ) ( x 18 ) + ( x 20 ) ( x 1 ) ( x 1 ) ( x 18 ) \frac{x(x - 19) + (x - 21)(x - 2)}{(x - 2)(x - 19)} = \frac{(x + 1)(x - 18) + (x - 20)(x - 1)}{(x - 1)(x - 18)}

Expand: 2 x 2 42 x + 42 x 2 21 x + 38 = 2 x 2 38 x + 2 x 2 19 x + 18 \frac{2x^{2} - 42x + 42}{x^{2} - 21x + 38} = \frac{2x^{2} - 38x + 2}{x^{2} - 19x + 18}

Factorise the numerators: 2 ( x 2 21 x + 21 ) x 2 21 x + 38 = 2 ( x 2 19 x + 1 ) x 2 19 x + 18 \frac{2(x^{2} - 21x + 21)}{x^{2} - 21x + 38} = \frac{2(x^{2} - 19x + 1)}{x^{2} - 19x + 18}

We can cancel both sides by 2: x 2 21 x + 21 x 2 21 x + 38 = x 2 19 x + 1 x 2 19 x + 18 \frac{x^{2} - 21x + 21}{x^{2} - 21x + 38} = \frac{x^{2} - 19x + 1}{x^{2} - 19x + 18}

Which can also be written as: 1 17 x 2 21 x + 38 = 1 17 x 2 19 x + 18 1 - \frac{17}{x^{2} - 21x + 38} = 1 - \frac{17}{x^{2} - 19x + 18}

Therefore: x 2 21 x + 38 = x 2 19 x + 18 x^{2} - 21x + 38 = x^{2} - 19x + 18 2 x = 20 2x = 20 x = 10 x = 10

Simply plug in the values of x x and verify

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...