Fracton Twister

Algebra Level 1

1 1 × 2 + 1 2 × 3 + 1 3 × 4 + + 1 99 × 100 = ? \large \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots +\frac{1}{99 \times 100} = \ ?


The answer is 0.99.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let the sum be S S , then,

S = 1 1 × 2 + 1 2 × 3 + 1 3 × 4 + . . . 1 99 × 100 = k = 1 99 1 k ( k + 1 ) = k = 1 99 ( 1 k 1 k + 1 ) = k = 1 99 1 k k = 1 99 1 k + 1 = k = 1 99 1 k k = 2 100 1 k = 1 1 1 100 = 0.99 \begin{aligned} S & = \frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + ... \frac{1}{99\times 100} \\ & = \sum_{k=1}^{99} \frac{1}{k(k+1)} \\ & = \sum_{k=1}^{99} \left( \frac{1}{k} - \frac{1}{k+1} \right) \\ & = \sum_{k=1}^{99} \frac{1}{k} - \sum_{k=\color{#D61F06}{1}}^{\color{#D61F06}{99}} \frac{1}{\color{#D61F06}{k+1}} \\ & = \sum_{k=1}^{99} \frac{1}{k} - \sum_{k=\color{#D61F06}{2}}^{\color{#D61F06}{100}} \frac{1}{\color{#D61F06}{k}} \\ & = \frac{1}{1} - \frac{1}{100} \\ & = \boxed{0.99} \end{aligned}

Akshat Sharda
Nov 26, 2015

1 1 × 2 + 1 2 × 3 + 1 3 × 4 + + 1 99 × 100 1 1 2 + 1 2 1 3 + 1 3 1 4 + + 1 99 1 100 1 1 100 = 99 100 = 0.99 \frac{1}{1×2}+\frac{1} {2×3}+\frac{1}{3 \times 4}+\ldots +\frac{1}{99×100} \\ 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\ldots+\frac{1}{99}-\frac{1}{100} \\ 1-\frac{1}{100}=\frac{99}{100}=\boxed{0.99}

Manuel Kahayon
Nov 26, 2015

Through inspection, it can be seen that all of the terms are of the form (1/(n)(n+1)), which can be equated to (1/n)-(1/(n+1)). When all of the numbers are written in this form, all numbers except (1/1)-(1/100) get cancelled out. Solving for this gives us 99/100.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...