Francisco's Cubic Roots

Algebra Level 5

Let r 1 , r 2 , r 3 r_1, r_2, r_3 be the roots of polynomial P ( x ) = x 3 + 3 x + 1 P(x) = x^3 + 3x + 1 . Evaluate the product k = 1 3 ( r k 2 + r k + 1 ) . \displaystyle \prod_{k=1}^3 (r_k^2 + r_k + 1).

This problem is posed by Francisco R .

Details and assumptions

For those unfamiliar with the product notation,

k = 1 3 ( r k 2 + r k + 1 ) = ( r 1 2 + r 1 + 1 ) ( r 2 2 + r 2 + 1 ) ( r 3 2 + r 3 + 1 ) . \displaystyle \prod_{k=1}^3 (r_k^2 + r_k + 1) = (r_1 ^2 + r_1 + 1) ( r_2 ^ 2 + r_2 + 1 ) ( r_ 3 ^2 + r_3 + 1 ) .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Note that P ( x ) = ( x r 1 ) ( x r 2 ) ( x r 3 ) P(x)=(x-r_1)(x-r_2)(x-r_3) and r k 2 + r k + 1 = ( w r k ) ( w 2 r k ) r_k^2+r_k+1=(w-r_k)(w^2-r_k) , where w w is a primitive cubic root of unity.

Then, our product is ( w r 1 ) ( w 2 r 1 ) ( w r 2 ) ( w 2 r 2 ) ( w r 3 ) ( w 2 r 3 ) (w-r_1)(w^2-r_1)(w-r_2)(w^2-r_2)(w-r_3)(w^2-r_3) , or simply P ( w ) P ( w 2 ) P(w)P(w^2) .

P ( w ) P ( w 2 ) = ( w 3 + 3 w + 1 ) ( w 6 + 3 w 2 + 1 ) P ( w ) P ( w 2 ) = ( 2 + 3 w ) ( 2 + 3 w 2 ) P ( w ) P ( w 2 ) = 4 2 ( 3 ) + 3 2 P ( w ) P ( w 2 ) = 7 P(w)P(w^2)=(w^3+3w+1)(w^6+3w^2+1)\\ P(w)P(w^2)=(2+3w)(2+3w^2)\\ P(w)P(w^2)=4-2(3)+3^2\\ P(w)P(w^2)=\boxed {7}

I love this approach!

Calvin Lin Staff - 5 years, 9 months ago

This was one elegant solution!! <3

Soumava Pal - 5 years, 3 months ago

Nice way!!

I solved by evaluating the product.. -_-

Dev Sharma - 5 years, 7 months ago
Chew-Seong Cheong
Aug 28, 2015

k = 1 3 ( r k 2 + r k + 1 ) = k = 1 3 ( r k 3 1 r k 1 ) = k = 1 3 ( ( 3 r k 1 ) 1 r k 1 ) [ r k 3 + 3 r k + 1 = 0 ] = k = 1 3 ( 3 r k + 2 r k 1 ) = ( 3 r 1 + 2 ) ( 3 r 2 + 2 ) ( 3 r 3 + 2 ) ( r 1 1 ) ( r 2 1 ) ( r 3 1 ) = 27 r 1 r 2 r 3 + 18 ( r 1 r 2 + r 2 r 3 + r 3 r 1 ) + 12 ( r 1 + r 2 + r 3 ) + 8 r 1 r 2 r 3 ( r 1 r 2 + r 2 r 3 + r 3 r 1 ) + r 1 + r 2 + r 3 1 = 27 ( 1 ) + 18 ( 3 ) + 12 ( 0 ) + 8 1 + 3 + 0 1 [Vieta’s formulas] = 35 5 = 7 \begin{aligned} \prod_{k=1}^3 \left(r_k^2+r_k+1\right) & = \prod_{k=1}^3 \left(\frac{\color{#3D99F6} {r_k^3} -1}{r_k-1}\right) \\ & = \prod_{k=1}^3 \left(\frac{\color{#3D99F6} {(-3r_k-1)} -1}{r_k-1}\right) \quad \quad \color{#3D99F6} {[r_k^3 + 3r_k + 1 = 0]} \\ & = - \prod_{k=1}^3 \left(\frac{3r_k + 2}{r_k-1}\right) \\ & = - \frac{(3r_1 + 2)(3r_2 + 2)(3r_3 + 2)}{(r_1-1)(r_2-1)(r_3-1)} \\ & = - \frac {27r_1r_2r_3 + 18(r_1r_2+r_2r_3+r_3r_1)+12(r_1+r_2+r_3)+8} {r_1r_2r_3-(r_1r_2+r_2r_3+r_3r_1) + r_1+r_2+r_3 - 1} \\ & = - \frac {27(\color{#3D99F6}{-1})+18(\color{#3D99F6}{3}) +12(\color{#3D99F6}{0})+8} {\color{#3D99F6}{-1}+\color{#3D99F6}{3} +\color{#3D99F6}{0}-1} \quad \quad \color{#3D99F6} {\text{[Vieta's formulas]}} \\ & = \frac{35}{5} = \boxed{7} \end{aligned}

Exactly did the same

SHASHANK GOEL - 5 years, 9 months ago

Log in to reply

Same method :-)

Pulkit Gupta - 5 years, 3 months ago
Shaurya Gupta
Nov 6, 2015

x 3 + 3 x + 1 = ( x 2 + x + 1 ) ( x 1 ) + ( 3 x + 2 ) r 2 + r + 1 = 3 r + 2 1 r x^3+3x+1 = (x^2 + x + 1)(x-1)+(3x+2) \implies r^2 + r + 1 = \frac{3r+2}{1-r}
( r 2 + r + 1 ) = ( 3 r + 2 ) ( 1 r ) = 27 f ( 2 / 3 ) f ( 1 ) = 7 \prod{(r^2+r+1)} = \frac{\prod{(3r+2)}}{\prod{(1-r)}} = \frac{-27 f(-2/3)}{f(1)} = \boxed{7}

That's a nice way of using the Remainder Factor Theorem multiple times :)

Calvin Lin Staff - 5 years, 6 months ago

Exactly, Shaurya. No need to multiply out e.g. the (1-r) terms when we already know that the product is going to equal f(1).

Peter Byers - 5 years, 6 months ago

elegant solution.

Vedansh Priyadarshi - 3 years, 9 months ago
Hung Woei Neoh
Apr 13, 2016

I actually managed to get the answer by expanding the product itself. Sometimes, bulldozing through is an option too. It took more than half an hour though.

For easy typing, let r 1 = a , r 2 = b r_1 = a, r_2 = b and r 3 = c r_3 = c

Therefore:

k = 1 3 ( r k 2 + r k + 1 ) = ( a 2 + a + 1 ) ( b 2 + b + 1 ) ( c 2 + c + 1 ) \displaystyle \prod_{k=1}^3(r_k^2+r_k+1) = (a^2 + a + 1)(b^2 + b + 1)(c^2 + c + 1)

From Vieta's formulas (go check it out if you do not know this),

a + b + c = 0 a + b + c = 0

a b + a c + b c = 3 ab + ac + bc = 3

a b c = 1 abc = -1

Expand the entire product and you'll get an expression with 27 terms:

( a 2 + a + 1 ) ( b 2 + b + 1 ) ( c 2 + c + 1 ) (a^2 + a + 1)(b^2 + b + 1)(c^2 + c + 1)

= a 2 b 2 c 2 + a 2 b c 2 + a 2 c 2 + a b 2 c 2 + a b c 2 + a c 2 + b 2 c 2 + b c 2 + c 2 = a^2b^2c^2 + a^2bc^2 + a^2c^2 + ab^2c^2 + abc^2 + ac^2 + b^2c^2 + bc^2 + c^2

+ a 2 b 2 c + a 2 b c + a 2 c + a b 2 c + a b c + a c + b 2 c + b c + c + a^2b^2c +a^2bc + a^2c + ab^2c + abc + ac + b^2c + bc + c

+ a 2 b 2 + a 2 b + a 2 + a b 2 + a b + a + b 2 + b + 1 + a^2b^2 + a^2b + a^2 + ab^2 + ab + a + b^2 + b + 1

Sort out the entire mess and split it as below:

( a 2 + a + 1 ) ( b 2 + b + 1 ) ( c 2 + c + 1 ) (a^2 + a + 1)(b^2 + b + 1)(c^2 + c + 1)

= a 2 b 2 c 2 + a b c + a b + a c + b c + a + b + c + 1 = a^2b^2c^2 + abc + ab + ac + bc + a + b + c + 1

+ a 2 b 2 c + a 2 b c 2 + a b 2 c 2 + a 2 b c + a b 2 c + a b c 2 + a^2b^2c + a^2bc^2 + ab^2c^2 + a^2bc + ab^2c + abc^2

+ a 2 + b 2 + c 2 + a^2 + b^2 + c^2

+ a 2 b 2 + a 2 c 2 + b 2 c 2 + a^2b^2 + a^2c^2 + b^2c^2

+ a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 + a^2b + a^2c + ab^2 + b^2c + ac^2 + bc^2

Now, I'll solve the split rows one by one.

The first row, you can substitute the values directly from the equations above:

a 2 b 2 c 2 + a b c + a b + a c + b c + a + b + c + 1 a^2b^2c^2 + abc + ab + ac + bc + a + b + c + 1

= ( a b c ) 2 + a b c + ( a b + a c + b c ) + ( a + b + c ) + 1 = (abc)^2 + abc + (ab + ac + bc) + (a + b + c) + 1

= 1 1 + 3 + 0 + 1 = 4 = 1 - 1 + 3 + 0 + 1 = \boxed{4}

For the second row, you can factorize a b c abc :

a 2 b 2 c + a 2 b c 2 + a b 2 c 2 + a 2 b c + a b 2 c + a b c 2 a^2b^2c + a^2bc^2 + ab^2c^2 + a^2bc + ab^2c + abc^2

= a b c ( a b + a c + b c + a + b + c ) = abc (ab + ac + bc + a + b + c)

= 1 ( 3 + 0 ) = 3 = -1 (3 + 0) = \boxed{-3}

For the third row, square the first equation above:

( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 a b + 2 a c + 2 b c (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc

Therefore,

a 2 + b 2 + c 2 = ( a + b + c ) 2 2 ( a b + a c + b c ) a^2 + b^2 + c^2 = (a + b + c)^2 - 2 (ab + ac + bc)

= 0 2 2 ( 3 ) = 6 = 0^2 -2 (3) = \boxed{-6}

For the fourth row, square the second equation above:

( a b + a c + b c ) 2 = a 2 b 2 + a 2 c 2 + b 2 c 2 + 2 a 2 b c + 2 a b 2 c + 2 a b c 2 (ab + ac + bc)^2 = a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2ab^2c + 2abc^2

Therefore,

a 2 b 2 + a 2 c 2 + b 2 c 2 a^2b^2 + a^2c^2 + b^2c^2

= ( a b + a c + b c ) 2 2 a 2 b c 2 a b 2 c 2 a b c 2 = (ab + ac + bc)^2 - 2a^2bc - 2ab^2c - 2abc^2

= ( a b + a c + b c ) 2 2 a b c ( a + b + c ) = (ab + ac + bc)^2 - 2abc (a + b + c)

= 3 2 2 ( 1 ) ( 0 ) = 9 = 3^2 - 2 (-1) (0) = \boxed{9}

The final row is a bit tricky:

a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 a^2b + a^2c + ab^2 + b^2c + ac^2 + bc^2

= a b ( a + b ) + a c ( a + c ) + b c ( b + c ) = ab (a + b) + ac (a + c) + bc (b + c)

From equation 1,

a + b + c = 0 a + b = c , a + c = b , b + c = a a + b + c = 0 \implies a + b = -c, a + c = -b, b + c = -a

Substitute the three equations here, and you get:

a b ( c ) + a c ( b ) + b c ( a ) ab (-c) + ac (-b) + bc (-a)

= a b c a b c a b c = -abc - abc - abc

= 3 a b c = 3 ( 1 ) = 3 = -3 abc = -3(-1) = \boxed{3}

With the values of all 5 rows obtained, we can get the product:

( a 2 + a + 1 ) ( b 2 + b + 1 ) ( c 2 + c + 1 ) = 4 3 6 + 9 + 3 (a^2 + a + 1)(b^2 + b + 1)(c^2 + c + 1) = 4 - 3 - 6 + 9 + 3

k = 1 3 ( r k 2 + r k + 1 ) = 7 \displaystyle \prod_{k=1}^3(r_k^2+r_k+1) = \boxed{7}

Note: I used this method because I had no other better way to do it, and I didn't want to view solutions. There are much better solutions listed above. I wrote my solution only because I didn't want my efforts to go to waste

Great! That is the first approach that most people use, because it's so tempting to expand everything and bash it out.

Now that you have learnt other ways of manipulating this polynomial, give it a try (look at the challenge quizzes)! I love how the remainder factor theorem is so useful.

Calvin Lin Staff - 5 years, 2 months ago
Fiki Akbar
Aug 26, 2015

Write P ( x ) = x 3 + 3 x + 1 = ( x 1 ) ( x 2 + x + 1 ) + ( 2 + 3 x ) P(x) = x^3 + 3 x + 1 = (x-1)(x^2 + x +1) + (2+3x) and since r k r_k are the roots of P ( x ) P(x) , then for each k k r k 2 + r k + 1 = 2 + 3 r k 1 r k r_{k}^2 + r_{k} +1 = \frac{ 2+3r_{k}}{1-r_{k}}

Hence, we have k = 1 3 ( r k 2 + r k + 1 ) = 8 + 12 ( r 1 + r 2 + r 3 ) + 18 ( r 1 r 2 + r 2 r 3 + r 1 r 3 ) + 27 r 1 r 2 r 3 1 ( r 1 + r 2 + r 3 ) + ( r 1 r 2 + r 2 r 3 + r 1 r 3 ) r 1 r 2 r 3 \prod_{k=1}^{3} (r_{k}^2 + r_{k} +1 )= \frac{8 + 12(r_1 + r_2 + r_3 ) + 18 (r_1 r_2 + r_2 r_3 + r_1 r_3 ) + 27 r_1 r_2 r_3 }{1-(r_1 + r_2 + r_3) + (r_1 r_2 + r_2 r_3 + r_1 r_3 ) - r_1 r_2 r_3} From P ( x ) P(x) , we have r 1 + r 2 + r 3 = 0 r_1 + r_2 + r_3 = 0 , r 1 r 2 + r 2 r 3 + r 1 r 3 = 3 r_1 r_2 + r_2 r_3 + r_1 r_3 =3 , and r 1 r 2 r 3 = 1 r_1 r_2 r_3 = -1 . Then k = 1 3 ( r k 2 + r k + 1 ) = 35 5 = 7 \prod_{k=1}^{3} (r_{k}^2 + r_{k} +1) = \frac{35}{5} = 7

Moderator note:

Good way of using vieta's formula.

Note that we could have expressed it as 3 3 P ( 2 3 ) P ( 1 ) \frac{ 3^3 P( - \frac{2}{3} ) } { -P(1) } . Do you see why?

Good way of using vieta's formula.

Note that we could have expressed it as 3 3 P ( 2 3 ) P ( 1 ) \frac{ 3^3 P( - \frac{2}{3} ) } { -P(1) } . Do you see why?

Calvin Lin Staff - 5 years, 9 months ago
Manole Buican
Feb 11, 2016

Since ( r k 2 + r k + 1 ) ( r k 1 ) = r k 3 1 = 3 r k 2 (r_k^2 + r_k + 1)(r_k - 1) = r_k^3 - 1 = -3r_k - 2 , the asked product is equal with the following one: k = 1 3 3 r k 1 r k 1 \prod_{k=1}^{3}\frac{-3r_k - 1}{r_k - 1} . Now, let the y = x 1 y = x - 1 a subtitution that transform the original ecuation into y 3 + 3 y 2 + 6 y + 5 = 0 y^3 + 3y^2 + 6y + 5 = 0 and, according to Viete formulas, we have y 1 y 2 y 3 = 5 y_1y_2y_3 = -5 , thus ( r 1 1 ) ( r 2 1 ) ( r 3 1 ) = 5 (r_1 - 1)(r_2 - 1)(r_3 - 1) = -5 . Proceeding in the same manner with the subtitution t = 3 x 2 t = -3x - 2 , we get the equation t 3 + 6 t 2 + 39 t + 35 = 0 t^3 + 6t^2 + 39t + 35 = 0 , so that t 1 t 2 t 3 = 35 t_1t_2t_3 = -35 . Now, the asked product is 35 5 = 7 \frac{-35}{-5} = 7 .

Vinay Chindu
Aug 10, 2015

i = 1 3 ( x r i ) = x 3 + 3 x + 1 = P ( x ) \prod_{i=1}^{3} (x - r_i) = x^3 + 3x + 1 = P(x) .

i = 1 3 ( r i 2 + r i + 1 ) = i = 1 3 ( 1 r i 3 ) i = 1 3 ( 1 r i ) = Q ( 1 ) P ( 1 ) \prod_{i=1}^{3} (r^{2}_i + r_i + 1) = \frac {\prod_{i=1}^{3} (1 - r^3_i)}{\prod_{i=1}^{3}(1 - r_i)} = \frac {Q(1)}{P(1)} , where, Q ( x ) = i = 1 3 ( x r i 3 ) Q(x) = \prod_{i=1}^{3}(x - r^{3}_i) .

From P(x) we get, r 1 + r 2 + r 3 = 0 , r 1 r 2 + r 2 r 3 + r 3 r 1 = 3 r_1 + r_2 + r_3 = 0, r_1r_2 + r_2r_3 + r_3r_1 = 3 and r 1 r 2 r 3 = 1 r_1r_2r_3 = -1 . Using these three equations, following are easily calculated:

r 1 3 + r 2 3 + r 3 3 = 3 , r 1 3 r 2 3 + r 2 3 r 3 3 + r 3 3 r 1 3 = 30 r^{3}_1 + r^{3}_2 + r^{3}_3 = -3, r^{3}_1r^{3}_2 + r^{3}_2r^{3}_3 + r^{3}_3r^{3}_1 = 30 and r 1 3 r 2 3 r 3 3 = 1 r^{3}_1r^{3}_2r^{3}_3 = -1 .

Therefore, Q ( x ) = x 3 + 3 x 2 + 30 x + 1 Q(x) = x^3 + 3x^2 + 30x + 1 .

Q ( 1 ) P ( 1 ) = 35 5 = 7 \frac {Q(1)}{P(1)} = \frac {35}{5} = 7

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...