François Viete Going Wild

Algebra Level 5

If α , β , γ \alpha, \beta, \gamma are the roots of x 3 x 1 = 0 x^3 - x - 1 = 0 , find 1 + α 1 α + 1 + β 1 β + 1 + γ 1 γ \dfrac{1 + \alpha}{1 - \alpha} + \dfrac{1 + \beta}{1 - \beta} + \dfrac{1 + \gamma}{1 - \gamma} .


The answer is -7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Rishabh Jain
Jun 18, 2016

Let y = 1 + α 1 α α = y 1 y + 1 y =\dfrac{1+\alpha}{1-\alpha}\implies \alpha=\dfrac{y-1}{y+1}

Since α \alpha is a root of the original equation, ( y 1 y + 1 ) 3 ( y 1 y + 1 ) 1 = 0 \therefore \left(\dfrac{y-1}{y+1}\right)^3-\left( \dfrac{y-1}{y+1}\right)-1=0

y 3 + 7 y 2 y + 1 = 0 \implies y^3+7y^2-y+1=0

The sum of roots of this equation is 7 -7 which is the required value. Hence:-

1 + α 1 α + 1 + β 1 β + 1 + γ 1 γ = 7 \dfrac{1\ + \ \alpha}{1 \ - \ \alpha} + \dfrac{1 \ + \ \beta}{1\ - \ \beta} + \dfrac{1 \ +\ \gamma}{1 \ - \ \gamma}=\boxed{- 7}

See Transforming Roots of a polynomial


A l t e r n a t e S o l u t i o n \LARGE\star\color{#69047E}{\boxed{\mathscr{\color{#007fff}{Alternate~Solution}}}}\star Call the expression F \mathfrak F

Taking LCM and slight simplification gives:-

F = 3 + 3 α β γ 2 cyc α cyc α β 1 + cyc α β cyc α α β γ \mathfrak{F}=\dfrac{3+3\alpha\beta\gamma-2\displaystyle\sum_{\text{cyc}}\alpha-\displaystyle\sum_{\text{cyc}}\alpha\beta}{1+\displaystyle\sum_{\text{cyc}}\alpha\beta-\displaystyle\sum_{\text{cyc}}\alpha-\alpha\beta\gamma}

Using Vietas, cyc α = 0 , cyc α β = 1 , α β γ = 1 \displaystyle\sum_{\text{cyc}}\alpha=0,\displaystyle\sum_{\text{cyc}}\alpha\beta=-1,\alpha\beta\gamma=1 .

Substituting we get F = 7 \large \mathfrak{F}=\boxed{- 7} .

(See Vieta's Formula )

As always, your solution is amazing. The way you write makes even a simple solution looks amazing. Keep the good work buddy :)

Aditya Sky - 4 years, 12 months ago

Log in to reply

And people like you motivate me to write solutions and problems.... Cheers and Keep solving ¨ \ddot\smile

Rishabh Jain - 4 years, 12 months ago

I'm having some trouble understanding your first step. I keep getting y = α + 1 α 1 α = y + 1 y 1 y =\dfrac{\alpha+1}{\alpha-1}\implies \alpha=\dfrac{y+1}{y-1} , where the second fraction is the reciprocal of your second fraction. Please help?

Lee Cho - 4 years, 11 months ago

Log in to reply

A slight typing error which is fixed now... :-)

Rishabh Jain - 4 years, 11 months ago

Umm, editing mistake, it's 7 -7

Jason Chrysoprase - 4 years, 12 months ago

Log in to reply

Typo... Corrected

Rishabh Jain - 4 years, 12 months ago

Reading other people's solution can really make one a better problem solver. I learnt that technique in the discussion of the problem "Fifth roots of unity" and used it here. ^_^

Atomsky Jahid - 4 years, 12 months ago

Log in to reply

Yeah transforming roots is a standard method to form required equations and yeah I agree the people on brilliant write a wide variety of beautiful solutions... ¨ \ddot\smile

Rishabh Jain - 4 years, 12 months ago

Nice one, i use other solution by using Vieta's formula

Jason Chrysoprase - 4 years, 12 months ago
Hung Woei Neoh
Jun 18, 2016

Source of this solution

n = { α , β , γ } 1 + n 1 n = 1 + α 1 α + 1 + β 1 β + 1 + γ 1 γ \displaystyle \sum_{n=\{\alpha,\beta,\gamma\}} \dfrac{1+n}{1-n}\\ =\dfrac{1+\alpha}{1-\alpha}+\dfrac{1+\beta}{1-\beta}+\dfrac{1+\gamma}{1-\gamma}

From Vieta's formula, we know that

α + β + γ = 0 α β + α γ + β γ = 1 α β γ = 1 \alpha + \beta + \gamma = 0\\ \alpha\beta+\alpha\gamma + \beta\gamma = -1\\ \alpha\beta\gamma = 1

Now, to simplify our calculations, we substitute α = a + 1 \alpha = a + 1 , β = b + 1 \beta = b+1 and γ = c + 1 \gamma = c+1 into the expression and the equations

The expression becomes:

a + 2 a + b + 2 b + c + 2 c = ( b c ( a + 2 ) + a c ( b + 2 ) + a b ( c + 2 ) a b c ) = ( 3 a b c + 2 ( a b + a c + b c ) a b c ) \dfrac{a+2}{-a} + \dfrac{b+2}{-b} + \dfrac{c+2}{-c}\\ =-\left(\dfrac{bc(a+2) + ac(b+2) + ab(c+2)}{abc}\right)\\ =-\left(\dfrac{3abc+2(ab+ac+bc)}{abc} \right)

The equations become (simplify yourself, I'm too lazy to type out all the steps):

a + 1 + b + 1 + c + 1 = 0 a + b + c = 3 ( a + 1 ) ( b + 1 ) + ( a + 1 ) ( c + 1 ) + ( b + 1 ) ( c + 1 ) = 1 a b + a c + b c = 2 ( a + 1 ) ( b + 1 ) ( c + 1 ) = 1 a b c = 1 a + 1 + b + 1 + c + 1 = 0 \implies a+b+c = -3\\ (a+1)(b+1) + (a+1)(c+1) + (b+1)(c+1) = -1 \implies ab+ac+bc = 2\\ (a+1)(b+1)(c+1) = 1 \implies abc=1

Substitute these values into the expression to get the answer:

( 3 a b c + 2 ( a b + a c + b c ) a b c ) = ( 3 ( 1 ) + 2 ( 2 ) 1 ) = 7 -\left(\dfrac{3abc+2(ab+ac+bc)}{abc} \right)\\ =-\left(\dfrac{3(1)+2(2)}{1}\right)\\ =\boxed{-7}

We can make a equation having its roots as 1 + α 1 α , 1 + β 1 β \frac{1+\alpha}{1-\alpha},\frac{1+\beta}{1-\beta} and 1 + γ 1 γ \frac{1+\gamma}{1-\gamma} .

Let y = 1 + x 1 x y=\frac{1+x}{1-x} , then x = y 1 y + 1 x=\frac{y-1}{y+1} .

Placing x = y 1 y + 1 x=\frac{y-1}{y+1} in x 3 x 1 = 0 x^3-x-1=0 .

( y 1 y + 1 ) 3 ( y 1 y + 1 ) + 1 = 0 ( y 1 ) 3 ( y 1 ) ( y + 1 ) 2 ( y + 1 ) 3 = 0 y 3 + 7 y 2 y + 1 = 0 \left(\frac{y-1}{y+1}\right)^3-\left(\frac{y-1}{y+1}\right)+1=0 \\ (y-1)^3-(y-1)(y+1)^2-(y+1)^3=0 \\ y^3+7y^2-y+1=0

So, y 3 + 7 y 2 y + 1 = 0 y^3+7y^2-y+1=0 has 1 + α 1 α , 1 + β 1 β \frac{1+\alpha}{1-\alpha},\frac{1+\beta}{1-\beta} and 1 + γ 1 γ \frac{1+\gamma}{1-\gamma} as its roots.

Sum of roots of this equation = 7 =\boxed{-7}

1 + α 1 α + 1 + β 1 β + 1 + γ 1 γ = 7 \therefore \dfrac{1 + \alpha}{1 - \alpha} + \dfrac{1 + \beta}{1 - \beta} + \dfrac{1 + \gamma}{1 - \gamma}=\boxed{-7} .

And that's what I've written in main solution... :-)

Rishabh Jain - 4 years, 12 months ago

Did you know that you can use vieta formula to solve this ? I use them ( that's explained my title )

Jason Chrysoprase - 4 years, 12 months ago

Log in to reply

Okay..then please show your solution.

A Former Brilliant Member - 4 years, 12 months ago

Log in to reply

Okay, i'll post it tommorow. It's night here

Jason Chrysoprase - 4 years, 12 months ago
Patrik Kovacs
Jun 19, 2016

S = 1 + α 1 α + 1 + β 1 β + 1 + γ 1 γ T = 1 1 α + 1 1 β + 1 1 γ F i r s t f i n d T f ( x ) = x 3 x 1 = ( x α ) ( x β ) ( x γ ) f ( x ) f ( x ) = 3 x 2 1 x 3 x 1 = 1 x α + 1 x β + 1 x γ S o f ( 1 ) f ( 1 ) = 2 1 = 1 1 α + 1 1 β + 1 1 γ = T T h e r e f o r e T = 2 S = ( 1 α 1 α + 1 β 1 β + 1 γ 1 γ ) = = ( 1 α 2 1 α + 1 β 2 1 β + 1 γ 2 1 γ ) = = ( 1 + 2 1 α + 1 + 2 1 β + 1 + 2 1 γ ) = = ( 3 2 T ) = 7 S\quad =\quad \frac { 1+\alpha }{ 1-\alpha } \quad +\quad \frac { 1+\beta }{ 1-\beta } \quad +\quad \frac { 1+\gamma }{ 1-\gamma } \\ T\quad =\quad \frac { 1 }{ 1-\alpha } \quad +\quad \frac { 1 }{ 1-\beta } \quad +\quad \frac { 1 }{ 1-\gamma } \\ First\quad find\quad T\\ f(x)\quad =\quad { x }^{ 3 }-x-1\quad =\quad (x-\alpha )(x-\beta )(x-\gamma )\\ \frac { f'(x) }{ f(x) } \quad =\quad \frac { 3{ x }^{ 2 }-1 }{ { x }^{ 3 }-x-1 } \quad =\quad \frac { 1 }{ x-\alpha } \quad +\quad \frac { 1 }{ x-\beta } \quad +\quad \frac { 1 }{ x-\gamma } \\ So\quad \frac { f'(1) }{ f(1) } \quad =\quad \frac { 2 }{ -1 } \quad =\quad \frac { 1 }{ 1-\alpha } \quad +\quad \frac { 1 }{ 1-\beta } \quad +\quad \frac { 1 }{ 1-\gamma } \quad =\quad T\\ Therefore\quad T=-2\\ S\quad =\quad -(\frac { -1-\alpha }{ 1-\alpha } \quad +\quad \frac { -1-\beta }{ 1-\beta } \quad +\quad \frac { -1-\gamma }{ 1-\gamma } )\quad =\quad \\ =\quad -(\frac { 1-\alpha -2 }{ 1-\alpha } \quad +\quad \frac { 1-\beta -2 }{ 1-\beta } \quad +\quad \frac { 1-\gamma -2 }{ 1-\gamma } )\quad =\\ =\quad -(1\quad +\quad \frac { -2 }{ 1-\alpha } \quad +\quad 1\quad +\quad \frac { -2 }{ 1-\beta } \quad +\quad 1\quad +\quad \frac { -2 }{ 1-\gamma } )\quad =\quad \\ =\quad -(3-2T)\quad =\quad -7

Jason Chrysoprase
Jun 18, 2016

Rewrite the polynomial, x 3 x 1 = a x 3 + b x 3 + c x + d a = 1 , b = 0 , c = 1 , d = 1 Form the expression into one fraction, 1 + α 1 α + 1 + β 1 β + 1 + γ 1 γ = 3 α β γ + α β + β γ + α γ + α + β + γ 3 α β γ ( α β + β γ + α γ ) + α + β + γ 1 Now look closely and you can see that you can use Vieta’s Formula, 3 α β γ + α β + β γ + α γ + α + β + γ 3 α β γ ( α β + β γ + α γ ) + α + β + γ 1 = 3 ( d a ) + ( c a ) + ( b a ) 3 ( d a ) ( c a ) + ( b a ) 1 = 3 ( 1 ) + ( 1 ) + ( 0 ) 3 ( 1 ) ( 1 ) + ( 0 ) 1 = 7 \begin{aligned} \text{Rewrite the polynomial,}& \\ x^3 - x - 1 &= ax^3 + bx^3 + cx + d\\ a = 1, \ b & = 0, \ c = -1,\ d=-1 \\ \text{Form the expression into one fraction,}\\ \dfrac{1 + \alpha}{1 - \alpha} + \dfrac{1 + \beta}{1 - \beta} + \dfrac{1 + \gamma}{1 - \gamma} & = \frac{-3 \alpha \beta \gamma + \alpha \beta + \beta \gamma + \alpha \gamma + \alpha + \beta + \gamma -3 }{\alpha \beta \gamma - ( \alpha \beta + \beta \gamma + \alpha \gamma ) + \alpha + \beta + \gamma - 1 } \\ \text{Now look closely and you can see that you can use Vieta's Formula,}\\ \frac{-3 \color{#D61F06}{\alpha \beta \gamma} + \color{#3D99F6}{\alpha \beta + \beta \gamma + \alpha \gamma} + \color{#20A900}{\alpha + \beta + \gamma} -3 }{\color{#D61F06}{\alpha \beta \gamma} - ( \color{#3D99F6}{ \alpha \beta + \beta \gamma + \alpha \gamma }) + \color{#20A900}{\alpha + \beta + \gamma} - 1 } & = \frac{-3 ( \color{#D61F06}{- \frac{d}{a}} ) + ( \color{#3D99F6}{\frac{c}{a}} ) + (\color{#20A900}{- \frac{b}{a}}) -3 }{ (\color{#D61F06}{- \frac{d}{a}}) - (\color{#3D99F6}{\frac{c}{a}}) + (\color{#20A900}{- \frac{b}{a}} ) - 1 }\\ & = \frac{-3 ( \color{#D61F06}{1} ) + ( \color{#3D99F6}{-1} ) + (\color{#20A900}{0}) -3 }{ (\color{#D61F06}{1}) - (\color{#3D99F6}{-1}) + (\color{#20A900}{0} ) - 1 }\\ & = \color{#69047E}{\boxed{-7}} \end{aligned}

That's what I have written in alternate solution..

Rishabh Jain - 4 years, 12 months ago

Log in to reply

Ohh really, i did not notice

There is so many summation notation, i quickly guess that it's a different solution

Jason Chrysoprase - 4 years, 12 months ago

Log in to reply

Why so many downvote on my comment :(

Jason Chrysoprase - 4 years, 12 months ago
Refb Pe
Jun 18, 2016

Same as the alternate solution.......

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...