Frankenstein?

Calculus Level 4

0 π e x sin 2 ( x ) d x \large \int_0^\pi e^x \sin^2(x) \, dx

The above integral has a simple exact closed form. Evaluate this integral and give your answer to 3 decimal places.


The answer is 8.856.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 13, 2016

0 π e x sin 2 x d x = 1 2 0 π e x ( 1 cos ( 2 x ) ) d x = 1 2 0 π e x d x 1 4 0 π e x ( e 2 x i + e 2 x i ) d x = 1 2 [ e x ] 0 π 1 4 [ e ( 1 + 2 i ) x 1 + 2 i + e ( 1 2 i ) x 1 2 i ] 0 π = 1 2 ( e π 1 ) 1 4 [ e x ( e 2 x i + e 2 x i 2 i e 2 x i + 2 i e 2 x i ) 1 + 4 ] 0 π = 1 2 ( e π 1 ) 1 2 [ e x ( cos ( 2 x ) + 2 i sin ( 2 x ) ) 5 ] 0 π = 1 2 ( e π 1 ) 1 10 [ e π ( cos ( 2 π ) + 2 i sin ( 2 π ) ) e 0 ( cos 0 + 2 i sin 0 ) ] = 1 2 ( e π 1 ) 1 10 ( e π 1 ) = 2 5 ( e π 1 ) = 8.856 \begin{aligned} \int_0^\pi e^x \sin^2 x \space dx & = \frac{1}{2} \int_0^\pi e^x (1-\cos(2x)) \space dx \\ & = \frac{1}{2} \int_0^\pi e^x \space dx - \frac{1}{4} \int_0^\pi e^x \left(e^{2xi} + e^{-2xi} \right) \space dx \\ & = \frac{1}{2}\left[e^x\right]_0^\pi - \frac{1}{4}\left[\frac{e^{(1+2i)x}}{1+2i} + \frac{e^{(1-2i)x}}{1-2i}\right]_0^\pi \\ & = \frac{1}{2}\left(e^\pi -1\right) - \frac{1}{4}\left[\frac{e^x\left(e^{2xi} + e^{-2xi} -2ie^{2xi} + 2i e^{-2xi} \right)}{1+4} \right]_0^\pi \\ & = \frac{1}{2}\left(e^\pi -1\right) - \frac{1}{2}\left[\frac{e^x\left(\cos (2x) + 2i\sin (2x) \right)}{5} \right]_0^\pi \\ & = \frac{1}{2}\left(e^\pi -1\right) - \frac{1}{10}\left[e^\pi \left(\cos (2\pi) + 2i\sin (2\pi) \right) - e^0 \left(\cos 0 + 2i\sin 0 \right) \right] \\ & = \frac{1}{2}\left(e^\pi -1\right) - \frac{1}{10}\left(e^\pi - 1 \right) \\ & = \frac{2}{5}\left(e^\pi -1\right) = \boxed{8.856} \end{aligned}

certainly easy solution took me long to solve this, how fast do you solve the problem and how do you realize to use certain things instead others?

Mardokay Mosazghi - 5 years, 4 months ago

Log in to reply

I like to use e i θ = cos θ + i sin θ e^{i\theta} = \cos \theta + i \sin \theta . Frequently, it simplifies matter. In this case integration of e z e^{z} is simple.

Chew-Seong Cheong - 5 years, 4 months ago

Exponential + trig combination functions always scream to me to use Euler's Cosine & Sine Identities as a simple substitution (much like Chew-Seong's hint above). That helps transform the above integrand into a series of exponential function terms that is readily integrable.

tom engelsman - 5 years, 4 months ago

Log in to reply

yes sir i am also learning to be aware when yo use Euler cosines and sin identities.

Mardokay Mosazghi - 5 years, 4 months ago

Yes, Euler is my greatest mathematician.

Chew-Seong Cheong - 5 years, 4 months ago

Great solution !

Keshav Tiwari - 5 years, 4 months ago
Josh Banister
Feb 13, 2016

To do this problem the way I did, we first find the antiderivative of e x sin 2 ( x ) e^x \sin^2(x) and then using the fundamental theorem of calculus, solve this problem. Firstly though, we use integration by parts a few times e x sin 2 ( x ) d x = e x sin 2 ( x ) ( e x ( 2 sin ( x ) cos ( x ) ) d x ) = e x sin 2 ( x ) 2 e x sin ( x ) cos ( x ) d x = e x sin 2 ( x ) 2 ( e x sin ( x ) cos ( x ) e x ( cos 2 ( x ) sin 2 ( x ) ) d x ) = e x sin 2 ( x ) 2 e x sin ( x ) cos ( x ) + 2 e x ( 1 2 sin 2 ( x ) ) d x = e x sin 2 ( x ) 2 e x sin ( x ) cos ( x ) + 2 e x 4 e x sin 2 ( x ) d x 5 e x sin 2 ( x ) d x = e x sin 2 ( x ) 2 e x sin ( x ) cos ( x ) + 2 e x e x sin 2 ( x ) d x = 1 5 ( e x sin 2 ( x ) 2 e x sin ( x ) cos ( x ) + 2 e x ) \begin{aligned} \int e^x \sin^2(x) dx &= e^x \sin^2(x) - \left( \int e^x \big(2 \sin(x) \cos(x)\big) dx \right) \\ &= e^x \sin^2(x) - 2\int e^x \sin(x) \cos(x) dx \\ &= e^x \sin^2(x) - 2\left( e^x \sin(x) \cos(x) - \int e^x \big(\cos^2(x) - \sin^2(x) \big) dx \right) \\ &= e^x \sin^2(x) - 2e^x \sin(x) \cos(x) + 2\int e^x \big(1 - 2\sin^2(x) \big) dx \\ &= e^x \sin^2(x) - 2e^x \sin(x) \cos(x) + 2e^x - 4\int e^x \sin^2(x) dx \\ \implies 5 \int e^x \sin^2(x) dx &= e^x \sin^2(x) - 2e^x \sin(x) \cos(x) + 2e^x \\ \implies \int e^x \sin^2(x) dx &= \frac{1}{5} \left(e^x \sin^2(x) - 2e^x \sin(x) \cos(x) + 2e^x \right) \end{aligned}

Let F ( x ) = 1 5 ( e x sin 2 ( x ) 2 e x sin ( x ) cos ( x ) + 2 e x ) F(x) = \frac{1}{5} \left(e^x \sin^2(x) - 2e^x \sin(x) \cos(x) + 2e^x \right) . By direct calculation (and realising that sin ( 0 ) = sin ( π ) = 0 \sin(0) = \sin(\pi) = 0 ), we have F ( 0 ) = 2 5 F(0) = \frac{2}{5} and F ( π ) = 2 5 e π F(\pi) = \frac{2}{5}e^{\pi} . And hence we have our final answer. 0 π e x sin 2 ( x ) d x = F ( π ) F ( 0 ) = 2 5 ( e π 1 ) \int_0^\pi e^x \sin^2(x) dx = F(\pi) - F(0) = \frac{2}{5} \left( e^\pi - 1\right) Which rounds to 8.856 \boxed{8.856}

i did the same old boring thing

Mardokay Mosazghi - 5 years, 4 months ago
Kevin Sullivan
Feb 12, 2016

I got the answer, but it took like two pages of work with trig identities and IBP, was there something I missed?

Try to solve it using complex numbers. Do refer to Chew-Seong Cheong's solution.

Pulkit Gupta - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...