Friedmann equation

Calculus Level 3

The Friedmann equation is, in a slightly simplified form,

( a ˙ a ) 2 = 1 Ω a 3 + Ω , \left( \frac{\dot a}{a} \right)^2 = \frac{1-\Omega}{a^3}+\Omega ,

where the parameter a a is time dependent, a = a ( t ) a=a(t) . Let us define the times t 0 t_0 and t 1 t_1 by a ( t 0 ) = 0 a(t_0)=0 , a ( t 1 ) = 1 a(t_1)=1 . What is the value of a a at time t = ( t 0 + t 1 ) / 2 t=(t_0+ t_1)/2 for Ω = 0.68 \Omega =0.68 ?


The answer is 0.5652.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Dec 14, 2018

The equation becomes a ˙ = ( 1 Ω ) + Ω a 3 a \dot{a} \; = \; \sqrt{\frac{(1-\Omega)+\Omega a^3}{a}} and so t t 0 = 0 a u ( 1 Ω ) + Ω u 3 d u = 2 3 0 a a d v ( 1 Ω ) + Ω v 2 = 2 3 Ω sinh 1 Ω a 3 1 Ω t-t_0 \; = \; \int_0^a\sqrt{\frac{u}{(1-\Omega)+\Omega u^3}}\,du \; = \; \tfrac23\int_0^{a\sqrt{a}} \frac{dv}{\sqrt{(1-\Omega) + \Omega v^2}} \; = \; \frac{2}{3\sqrt{\Omega}}\sinh^{-1}\sqrt{\frac{\Omega a^3}{1-\Omega}} so that 3 2 ( t 1 t 0 ) Ω = sinh 1 Ω 1 Ω \tfrac32(t_1 - t_0)\sqrt{\Omega} \; = \; \sinh^{-1}\sqrt{\frac{\Omega}{1-\Omega}} If A = a ( 1 2 ( t 0 + t 1 ) ) A = a\big(\tfrac12(t_0+t_1)\big) , then Ω A 3 1 Ω = sinh 2 ( 3 4 ( t 1 t 0 ) Ω ) = sinh 2 ( 1 2 sinh 1 Ω 1 Ω ) = 1 2 [ cosh ( sinh 1 Ω 1 Ω ) 1 ] = 1 1 Ω 2 1 Ω \frac{\Omega A^3}{1-\Omega} \; = \; \sinh^2\left(\tfrac34(t_1-t_0)\sqrt{\Omega}\right) \; = \; \sinh^2\left(\frac12\sinh^{-1}\sqrt{\frac{\Omega}{1-\Omega}}\right) \; = \; \frac12\left[\cosh\left(\sinh^{-1}\sqrt{\frac{\Omega}{1-\Omega}}\right) - 1 \right] \; = \; \frac{1 - \sqrt{1-\Omega}}{2\sqrt{1-\Omega}} and hence A 3 = 1 Ω ( 1 1 Ω ) 2 Ω A^3 \; = \; \frac{\sqrt{1-\Omega}(1 - \sqrt{1-\Omega})}{2\Omega} With Ω = 0.68 \Omega = 0.68 we obtain A 3 = 1 17 ( 5 2 4 ) A^3 \; = \; \tfrac{1}{17}(5\sqrt{2}-4) and hence the answer is 0.5653015309 \boxed{0.5653015309} . The fourth decimal place in the official answer is incorrect.

Laszlo Mihaly
Dec 14, 2018

See my solution to this problem: https://brilliant.org/problems/after-the-big-bang/?ref_id=1555615 . As pointed out by Mark Hennings, the solution was off by 0.0001, because of a round-off error in an intermediary step.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...