Don't You Wish They Were Ones

Logic Level 1

2 2 2 2 2 = 5 \Large 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ = \ 5

Do there exist operations that can be performed to make this equation true?

Note: Any operations can be used, so get creative!

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

34 solutions

Rishabh Jain
Mar 3, 2016

log 2 ( 2 × 2 × 2 × 2 × 2 ) = 5 \Large\color{#D61F06}{\log_2}( 2 \color{#D61F06}{\times} 2 \color{#D61F06}{\times} 2 \color{#D61F06}{\times} 2 \color{#D61F06}{\times}2 ) = \ 5 OR \textbf{OR} ( ( 2 × 2 × 2 ) + 2 ) ÷ 2 ) = 5 \Large ((2 \color{#20A900}{\times} 2 \color{#20A900}{\times} 2 )\color{#20A900}{+} 2 )\color{#20A900}{÷}2 ) = \ 5 OR \textbf{OR} 2 + 2 + 2 ( 2 2 ) ! = 5 \Large 2 \color{#0C6AC7}{+} 2 \color{#0C6AC7}{+} 2 \color{#0C6AC7}{-} (2 \color{#0C6AC7}{-}2 )\color{#0C6AC7}{!} = \ 5 OR \textbf{OR} ( 2 × 2 × 2 × 2 × 2 ) = 5 \Large \color{#EC7300}{\lfloor \left(\sqrt{\color{#333333}{2 \color{#EC7300}{\times} 2 \color{#EC7300}{\times} 2 \color{#EC7300}{\times} 2 \color{#EC7300}{\times}2 }}\right)\rfloor} = \ 5 OR \textbf{OR} 2 . 222 + 2 = 5 \huge \color{#007fff}{\lceil \color{#333333}{2\color{#007fff}{.}222}\rceil}\color{#007fff}{+}2=5 OR \textbf{OR} 2 + 2 + ( ( 2 2 ) × 2 ) ! = 5 \Large 2\color{#ff00cc}{+}2\color{#ff00cc}{+}\color{#ff00cc}{(}\color{#ff00cc}{(}2\color{#ff00cc}{-}2\color{#ff00cc}{)}\color{#ff00cc}{\times}2\color{#ff00cc}{)!}=5 OR \textbf{OR} 0 5 ( 2 × 2 × ( 2 2 ) × 2 ) ! d x = 5 \Large \color{forestgreen}{\int_0^5 (}2\color{forestgreen}{\times}2\color{forestgreen}{\times}\color{forestgreen}{(}2\color{forestgreen}{-}2\color{forestgreen}{)}\color{forestgreen}{\times}2\color{forestgreen}{)!~dx}=5

Or ( 2 × 2 ) + 2 ( 2 ÷ 2 ) (2 \times 2) + 2 - (2 \div 2) .

Sharky Kesa - 5 years, 3 months ago

Log in to reply

Or sgn ( 2 ) + sgn ( 2 ) + sgn ( 2 ) + sgn ( 2 ) + sgn ( 2 ) \text{sgn}(2)+\text{sgn}(2)+\text{sgn}(2)+\text{sgn}(2)+\text{sgn}(2) .

Sharky Kesa - 5 years, 3 months ago

Genius man!

Adarsh Kumar - 5 years, 3 months ago

Please clear the last one under the roots

sachin anand - 5 years, 3 months ago

Log in to reply

32 5.66 \sqrt{32}\approx 5.66 ..... Hence 5.66 = 5 \lfloor 5.66\rfloor=\boxed 5

Rishabh Jain - 5 years, 3 months ago

Woah! That's one bunch of answers!

Akhash Raja Raam - 5 years, 3 months ago

or [(2^2) *2 + 2] /2

Zarin Tasnim - 5 years, 3 months ago

Or 2+2+((2÷2)^2)

Saumya Chaturvedi - 3 months, 2 weeks ago
Lyndon Fan
Mar 3, 2016

2+2+2-2/2=5

2+2+2-(2/2)=5

hanif adzkiya - 5 years, 3 months ago

Log in to reply

Even I used the same method

Ejaz Ahmed - 5 years, 3 months ago

The easiest one

Himanshu Goyal - 5 years, 2 months ago

Sqrt(2) × sqrt(2) + 2 + 2 / 2 = 5

A Former Brilliant Member - 1 year, 6 months ago

2 + 2 + 2 2 2 = 5 ( 2 + 2 ) ! ÷ ( 2 + 2 ) ϕ ( 2 ) = 5 ϕ ( 2 ) + 2 2 ÷ ( 2 + 2 ) = 5 2 + 2 + 2 2 + 2 = 5 2 2 + ϕ ( 2 ) ( 2 2 ) = 5 ( 2 + 2 ) ! 2 2 + 2 = 5 2 2 2 + 2 2 = 5 \begin{aligned} \Huge{\color{#D61F06}{2+2+2-\dfrac{2}{2}=5}}\\ \Huge{\color{#3D99F6}{(2+2)!\div (2+2)-\phi(2)=5}}\\ \Huge{\color{#20A900}{\phi(2)+\dfrac{2}{2\div(2+2)}=5}}\\ \Huge{\color{#EC7300}{2+2+\left\lceil\dfrac{2}{2+2}\right\rceil=5}}\\ \Huge{\color{#624F41}{2^2+\phi(2)\left(\dfrac{2}{2}\right)=5}}\\ \Huge{\color{#CEBB00}{\left\lfloor\dfrac{(2+2)!-2}{2+2}\right\rfloor=5}}\\ \Huge{\color{#E81990}{\left\lceil\sqrt{2^{2^2}+\dfrac{2}{2}}\right\rceil=5}} \end{aligned}

ϕ ( 2 ) + ϕ ( 2 ) + ϕ ( 2 ) + ϕ ( 2 ) + ϕ ( 2 ) = 5 \Huge \color{#3D99F6}{\phi(2)+\phi(2)+\phi(2)+\phi(2)+\phi(2)=5}

Note: Hint is there is the title :)

( 2 + 2 / 2 ) ! ( 2 / 2 ) (2+2/2)!-(2/2)

Very creative!

Nihar Mahajan - 5 years, 3 months ago
Atishay Jain
Mar 4, 2016

2-(2/2)+(2*2) = 5

2 + 2 + 2 2 : 2 = 5 2+2+2-2:2=5

Adarsh Kumar
Mar 3, 2016

2 2 2 + 2 2 2^{2-2}+2^2

Nicola M.
Mar 3, 2016

(2:2)+(2x2):2=5

It's equal to 3 not 5

hanif adzkiya - 5 years, 3 months ago

Log in to reply

But try this one ((2x2x2)+2)/2

vishwathiga jayasankar - 5 years, 3 months ago
Angel Krastev
Mar 11, 2017

2x2 + 2^(2 - 2) = 5 OR 2^2 + 2^(2 - 2) = 5

Akshay Anand
Mar 23, 2016

((2×2)+2)-(2÷2)=5

Jase Jason
Mar 16, 2016

I got lazy and copied my primary school textbook. (2x2x2+2)/2 :D

Rudresh Naik
Mar 14, 2016

(2 raised to 0)X2

Deepika Bhargava
Mar 14, 2016

Yes this is possible: ((2×2×2)+2)÷2)

And partially because NOTHING'S IMPOSSIBLE :P

Maher Farag
Mar 10, 2016

{[(2×2)! / 2 ] - 2 } / 2 = 5

log 2 2 2 2 + ϕ ( 2 ) \log _{ { 2 }^{ { 2 }^{ -2 } } }{ 2 } +\phi (2)

Triston Childs
Mar 10, 2016

(2+2+2) - (2/2) = 5

Youssef Hassan F
Mar 10, 2016

log(2^2^2 * 2)/log(2)

Rahul Jain
Mar 10, 2016

( ((( 2 / 2 ) / 2 ) + 2 ) * 2 )

D. H. Kim
Mar 9, 2016

[ 2 ] + [ 2 ] + [ 2 ] + [ 2 ] + [ 2 ] [\sqrt{2}]+[\sqrt{2}]+[\sqrt{2}]+[\sqrt{2}]+[\sqrt{2}] , Did I do it right...?

Akeyla Naufal
Mar 9, 2016

(2+2÷2)! - 2÷2

Ankur Sharma
Mar 8, 2016

This could be the operation : 2+2+2-2/2 = 2+2+2-1= 6-1 = 5

Keep it simple

2 × 2 + 2 - 2 ÷ 2 = 4 + 2 - 1 = 5

Ferran Espuña
Mar 6, 2016

(22-2)/(2+2)=5

Fahim Saikat
Mar 6, 2016

{2^(2-2)} +2+2=5

Andrea La Cava
Mar 6, 2016

2^0 + 2^0 + 2^0 + 2^0 + 2^0 = 5

Savanna Downing
Mar 6, 2016

2^(2-2) +2+2

Sean Broderick
Mar 5, 2016

2 × 2 - 2 ÷ 2 + 2 = 5

Paarth Thadani
Mar 4, 2016

2-(2/2)+2+2

Dong Jiang
Mar 4, 2016

(2/2/2+2)*2

Leonardo Vannini
Mar 4, 2016

Could the operation be the number of 2 or the number of operands?

Manuel Palacios
Mar 4, 2016

2+2+2-(2÷2)=5

Akshat Sharda
Mar 4, 2016

2^2+2-2÷2=5

Kay Xspre
Mar 3, 2016

2 × 2 + 2 + ( 2 / 2 ) = 5 \sqrt{2×2}+2+(2/2) = 5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...