A calculus problem by Sravan Chinta

Calculus Level 4

A curve C C passes through ( 2 , 0 ) (2,0) and the slope at ( x , y ) (x,y) as ( x + 1 ) 2 + ( y 3 ) ( x + 1 ) \dfrac { (x+1)^2+ (y-3)}{ (x+1)} . Find the area bounded by the curve and x x -axis in fourth quadrant.


The answer is 1.333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dharani Chinta
Dec 14, 2014

A c c o r d i n g t o t h e q u e s t i o n , s l o p e o f t h e c u r v e C a t ( x , y ) = ( x + 1 ) 2 + ( y 3 ) ( x + 1 ) o r d y d x = ( x + 1 ) + ( y 3 ) ( x + 1 ) d y d x ( 1 ( x + 1 ) ) y = ( x + 1 ) 3 ( x + 1 ) w h i c h i s l i n e a r d i f f e r e n t i a l e q a u t i o n I . F . = e d y ( x + 1 ) = e log ( x + 1 ) = 1 ( x + 1 ) T h u s , s o l u t i o n i s y ( x + 1 ) = ( 1 3 ( x + 1 ) 2 ) d x o r y ( x + 1 ) = x + 3 ( x + 1 ) + C o r y = x ( x + 1 ) + 3 + C ( x + 1 ) ( 1 ) A s t h e c u r v e p a s s e s t h r o u g h ( 2 , 0 ) 0 = 2.3 + 3 + C . 3 C = 3 T h u s , e q u a t i o n ( 1 ) b e c o m e s y = x ( x + 1 ) + 3 3 x 3 o r y = x 2 2 x w h i c h i s t h e e q u a t i o n o f c u r v e T h i s c a n b e w r i t t e n a s ( x + 1 ) 2 = ( y + 1 ) [ u p w a r d p a r a b o l a w i t h v e r t e x a t ( 1 , 1 ) m e e t i n g x a x i s a t ( 0 , 0 ) a n d ( 2 , 0 ) ] A r e a b o u n d e d b y t h e c u r v e a n d x a x i s i n f o u r t h q u a d r a n t i s A = 0 2 y d x = 0 2 ( x 2 2 x ) = x 3 3 x 2 0 2 = 8 3 4 = 4 3 = 1.333 According\quad to\quad the\quad question,\quad slope\quad of\quad the\quad curve\quad C\quad at\quad (x,y)\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\frac { { (x+1) }^{ 2 }+(y-3) }{ (x+1) } \quad \quad \\ \quad \quad \quad \quad \quad \quad \quad or\frac { dy }{ dx } \quad \quad =(x+1)+\frac { (y-3) }{ (x+1) } \quad \quad \quad \quad \\ \frac { dy }{ dx } -(\frac { 1 }{ (x+1) } )y\quad \quad =\quad (x+1)-\frac { 3 }{ (x+1) } \quad \quad \\ \quad which\quad is\quad linear\quad differential\quad eqaution\\ I.F.={ e }^{ -\int { \frac { dy }{ (x+1) } } }\quad ={ e }^{ -\log { (x+1) } }\quad =\frac { 1 }{ (x+1) } \quad \\ Thus,solution\quad is\quad \frac { y }{ (x+1) } \quad =\quad \int { (1-\frac { 3 }{ { (x+1) }^{ 2 } } ) } dx\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad or\quad \quad \quad \frac { y }{ (x+1) } \quad =\quad x+\frac { 3 }{ (x+1) } +C\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad or\quad \quad y\quad \quad =\quad x(x+1)+3+C(x+1)\rightarrow \quad (1)\\ As\quad the\quad curve\quad passes\quad through(2,0)\quad \\ \quad \quad \quad \quad \quad \quad \quad \quad 0=2.3+3+C.3\quad \Rightarrow \quad \quad C\quad \quad =\quad -3\\ Thus,\quad equation\quad (1)\quad becomes\quad y=x(x+1)+3-3x-3\\ \quad \quad \quad \quad or\quad \quad y={ x }^{ 2 }-2x\quad which\quad is\quad the\quad equation\quad of\quad curve\\ This\quad can\quad be\quad written\quad as\quad \quad { (x+1) }^{ 2 }\quad =\quad (y+1)\\ [upward\quad parabola\quad with\quad vertex\quad at\quad (1,-1)\quad meeting\quad x-axis\\ at\quad (0,0)\quad and\quad (2,0)]\\ Area\quad bounded\quad by\quad the\quad curve\quad and\quad x-axis\quad in\quad fourth\quad quadrant\\ is\quad \quad \quad \quad \quad \quad \quad \quad \quad A\quad =\quad \left| \int _{ 0 }^{ 2 }{ ydx } \right| \quad =\left| \int _{ 0 }^{ 2 }{ ({ x }^{ 2 }-2x) } \right| ={ \left| \frac { { x }^{ 3 } }{ 3 } -{ x }^{ 2 } \right| }_{ 0 }^{ 2 }\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\left| \frac { 8 }{ 3 } -4 \right| \quad =\frac { 4 }{ 3 } =1.333\quad

Tom Engelsman
Aug 24, 2017

We know our slope equals y = ( x + 1 ) 2 + ( y 3 ) x + 1 . y' = \frac{(x+1)^2 + (y-3)}{x+1}. , which can be rewritten as:

y ( x + 1 ) ( y 3 ) ( x + 1 ) 2 = 1 d d x ( y 3 x + 1 ) = 1 y 3 x + 1 = x + C \frac{y'(x+1) - (y-3)}{(x+1)^2} = 1 \Rightarrow \frac{d}{dx} (\frac{y-3}{x+1}) = 1 \Rightarrow \frac{y-3}{x+1} = x + C ;

and substituting the boundary condition y ( 2 ) = 0 y(2) = 0 yields C = 3 C = -3 and y ( x ) = x 2 2 x . y(x) = x^2 - 2x. The required area is then computed as:

A = 0 2 2 x x 2 d x = 4 3 . A = |\displaystyle{\int_{0}^{2} 2x - x^2\,\mathrm{d}x}| = \boxed{\frac{4}{3}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...