A curve C passes through ( 2 , 0 ) and the slope at ( x , y ) as ( x + 1 ) ( x + 1 ) 2 + ( y − 3 ) . Find the area bounded by the curve and x -axis in fourth quadrant.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We know our slope equals y ′ = x + 1 ( x + 1 ) 2 + ( y − 3 ) . , which can be rewritten as:
( x + 1 ) 2 y ′ ( x + 1 ) − ( y − 3 ) = 1 ⇒ d x d ( x + 1 y − 3 ) = 1 ⇒ x + 1 y − 3 = x + C ;
and substituting the boundary condition y ( 2 ) = 0 yields C = − 3 and y ( x ) = x 2 − 2 x . The required area is then computed as:
A = ∣ ∫ 0 2 2 x − x 2 d x ∣ = 3 4 .
Problem Loading...
Note Loading...
Set Loading...
A c c o r d i n g t o t h e q u e s t i o n , s l o p e o f t h e c u r v e C a t ( x , y ) = ( x + 1 ) ( x + 1 ) 2 + ( y − 3 ) o r d x d y = ( x + 1 ) + ( x + 1 ) ( y − 3 ) d x d y − ( ( x + 1 ) 1 ) y = ( x + 1 ) − ( x + 1 ) 3 w h i c h i s l i n e a r d i f f e r e n t i a l e q a u t i o n I . F . = e − ∫ ( x + 1 ) d y = e − lo g ( x + 1 ) = ( x + 1 ) 1 T h u s , s o l u t i o n i s ( x + 1 ) y = ∫ ( 1 − ( x + 1 ) 2 3 ) d x o r ( x + 1 ) y = x + ( x + 1 ) 3 + C o r y = x ( x + 1 ) + 3 + C ( x + 1 ) → ( 1 ) A s t h e c u r v e p a s s e s t h r o u g h ( 2 , 0 ) 0 = 2 . 3 + 3 + C . 3 ⇒ C = − 3 T h u s , e q u a t i o n ( 1 ) b e c o m e s y = x ( x + 1 ) + 3 − 3 x − 3 o r y = x 2 − 2 x w h i c h i s t h e e q u a t i o n o f c u r v e T h i s c a n b e w r i t t e n a s ( x + 1 ) 2 = ( y + 1 ) [ u p w a r d p a r a b o l a w i t h v e r t e x a t ( 1 , − 1 ) m e e t i n g x − a x i s a t ( 0 , 0 ) a n d ( 2 , 0 ) ] A r e a b o u n d e d b y t h e c u r v e a n d x − a x i s i n f o u r t h q u a d r a n t i s A = ∣ ∣ ∣ ∫ 0 2 y d x ∣ ∣ ∣ = ∣ ∣ ∣ ∫ 0 2 ( x 2 − 2 x ) ∣ ∣ ∣ = ∣ ∣ ∣ 3 x 3 − x 2 ∣ ∣ ∣ 0 2 = ∣ ∣ 3 8 − 4 ∣ ∣ = 3 4 = 1 . 3 3 3